

Medicinal Chemistry/ CHEM 458/658

Special Topics – Micronutrients: Vitamins and Minerals

Bela Torok Department of Chemistry University of Massachusetts Boston Boston, MA

Introduction

Nutrients and diseases

- Scurvy Great Explorations (1400s)
- 19th centrury chemistry becomes powerful Organic Chemistry - Justus Liebig's theory of nutrition J. B. H. Dumas (1871) – it did not work with infants N. I. Lunin – mice exp. milk but not artifical formula
- first concept of deficiency diseases
- deficiency diseases in 18th century (Casal, 1755) pellagra
- Takaki, 1882, Japanese navy beri-beri problems, German diet "cured" conclusion: protein deficiency
- J. Goldberger, US PHS, still pellagra milk/eggs "cured" conclusion: the disease is due to the lack of dietary factors

Introduction

- Nutrients and dieseases
 - 1912 C. Funk: rice husk "cures" beri beri isolated the material from the husk named it "vitamines" (vital amines)
 - 1920 e was dropped not all vitamins are amines
 - 1920s vitamins A, B, D
 - 1930s vitamin C
 - 1930s-40s, W. Castle pernicious anaemia B_{12}
 - 1950s present : processed food, junk food

Introduction

Nobel Laureates and Their Work with Vitamins

Vitamin B₁

Vitamin B₁₂

Vitamin B₁₂

Vitamin B₁₂

Vitamin K

Vitamin D

Vitamin C

Vitamin K

Vitamin B₂ and B₆

Growth Stimulating Vitamins

Nobel Prize in Physiology or Medicine

Discovery of Vitamins Christiaan Eijkman (1929) Sir Frederick Gowland Hopkins (1929) George Hoyt Whipple (1934)* George Richards Minot (1934)* William Parry Murphy (1934)* Henrik Carl Peter Dam (1943)

Isolation of Vitamins

Adolf Otto Reinhold Windaus (1928)* Albert von Szent-Györgyi Nagyrapolt (1937) Richard Kuhn (1938) Edward Adelbert Doisy (1943)

Nobel Prize in Chemistry

 Synthesis of Vitamins

 Walter Norman Haworth (1937)
 Vitamin C

 Paul Karrer (1937)
 Vitamin E

 Robert Burns Woodward (1965)*
 Vitamin B₁₂

Structure of Vitamins

 Paul Karrer (1937)
 Vitamin A and B

 Richard Kuhn (1938)
 Vitamin B2

 Lord (Alexander R.) Todd (1957)*
 Vitamin B12

 Dorothy Crowfoot Hodgkin (1964)*
 Vitamin B12

* The Nobel Laureate has worked and contributed in this area, but was awarded for another achievement. See Prize Motivation.

Biomedical Importance

- Vitamins organic nutrients required in small quantities to maintain metabolic integrity
 - lipid soluble vitamins (ADEK)
 - water soluble vitamins (BHC + niacin)
 - structurally heterogeneous
 - multiple deficiency states

Determination of Micronutrients

- Criteria of adequacy
 - usually broad ranges clinical deficiency to toxicity

Table 14-1 Characteristics of Common Vitamins				
Vitamin	Coenzyme Product	Reaction Mediated	Human Deficiency Disease	
Water-Soluble				
Biotin	Biocytin	Carboxylation	а	
Pantothenic acid	Coenzyme A	Acyl transfer	а	
Cobalamin (B ₁₂)	Cobalamin coenzymes	Alkylation	Pernicious anemia	
Riboflavin (B ₂)	Flavin coenzymes	Oxidation-reduction	а	
-	Lipoic acid	Acyl transfer	а	
Nicotinamide (niacin)	Nicotinamide coenzymes	Oxidation-reduction	Pellagra	
Pyridoxine (B ₆)	Pyridoxal phosphate	Amino group transfer	а	
Folic acid	Tetrahydrofolate	One-carbon group transfer	Megaloblastic anemia	
Thiamine (B ₁)	Thiamine pyrophosphate	Aldehyde transfer	Beriberi	
Ascorbic acid (C)	Ascorbate	Hydroxylation	Scurvy	
Fat-Soluble				
Vitamin A		V ision	Night blindness	
Vitamin D		Ca ²⁺ absorption	Rickets	
Vitamin E		Antioxidant	а	
Vitamin K		Blood clotting	Hemorrhage	

^aNo specific name; deficiency in humans is rare or unobserved.

© 2008 John Wiley & Sons, Inc. All rights reserved.

VITAMIN A

- Two groups : a) retinol, retinal; b) retinoic acid (Vitamin A)

• VITAMIN A - role in vision

• VITAMIN A

deficiency: blindness

 loss of sensitivity to green light
 night blidness
 xerophthalmia

 excess: TOXIC liver problems calcium homeostasis, hypercalcemia

VITAMIN D

- not really a vitamin, rather a hormone
- can be synthesized in the skin (major source!)
- role in rickets development E. Mellanby, 1919

Figure 44–3. The synthesis of vitamin D in the skin.

- VITAMIN D
 - its metabolism is regulated by/regulates Calcium homeostasi

- VITAMIN D
 - deficiency:
 - risk factors:
- exclusively breast fed infants
- dark skin
- aging
- religious/cultural reasons
- cyctic fibrosis/cholestatic liver disease
- obesity

- diseases
 - rickets
 - osteomalacia
 - muscle wekaness/pain

• VITAMIN D

- excess: TOXIC
hypervitaminosis D
daily intake: 400 IU toxic above ~ 40,000 IU

hypercalcemia anorexia, nausea polyuria etc.

VITAMIN E

- H. M. Evans, 1922 its lack caused infertility problems in rats
- no precisely defined metabolic function
- lipid soluble antioxidant
- two groups of compounds

"pregnancy carrier"

Figure 44–5. Vitamin E vitamers. In α -tocopherol and tocotrienol R₁, R₂, and R₃ are all — CH₃ groups. In the β -vitamers R₂ is H, in the γ -vitamers R₁ is H, and in the δ -vitamers R₁ and R₂ are both H.

- VITAMIN E
 - α , β , γ , δ forms

 α -tocopherol, $R_1 = R_2 = R_3 = CH_3$ α -tocotrienol, $R_1 = R_2 = R_3 = CH_3$

 β -tocopherol, $R_1 = R_3 = CH_3$; $R_2 = H$ β -tocotrienol, $R_1 = R_3 = CH_3$; $R_2 = H$ γ -tocopherol, $R_1 = R_2 = CH_3 R_3 = H$ γ -tocotrienol, $R_1 = R_2 = CH_3 R_3 = H$

 δ -tocopherol, $R_1 = R_2 = R_3 = H$ δ -tocotrienol, $R_1 = R_2 = R_3 = H$

VITAMIN E

- the major lipid-soluble antioxidant in cell membranes and plasma lipoproteins

- VITAMIN E
 - deficiency:

resorption of fetuses testicular atrophy premature birth

- excess: slightly TOXIC heart failure

- VITAMIN K
 - "koagulations" vitamin
 - required for the synthesis of blood clotting proteins
 - H. Dam, 1929, E. A. Doisy 1930s

Phylloquinone

-0

CH₃

C=0

CH.

Figure 44–7. The vitamin K vitamers. Menadiol (or menadione) and menadiol diacetate are synthetic compounds that are converted to menaquinone in the liver.

- VITAMIN K
 - "koagulations" vitamin

Figure 44–8. The role of vitamin K in the synthesis of γ -carboxyglutamate.

- VITAMIN K
 - antidote to warfarin
 - important in the synthesis of calcium binding proteins

- deficiency: hemorrhage (bleeding disorder)
- toxicity:
 thrombosis
 kidney tubule degeneration
 hemolytic anemia

warfarin

- VITAMIN B₁ (thiamine)
 - key role in carbohydrate metabolism
 - Takaki (1884), Eijkman (1897) beriberi
 - multiple role

Thiamin Thiamin diphosphate Figure 44-9. Thiamin, thiamin diphosphate, and the carbanion form.

Carbanion

nicotinamide adenine

dinucleotide (NAD⁺)

- VITAMIN B₁ (thiamine)
 - multiple role (pyruvate dehydrogenase complex)

Figure 16-1 Concepts in Biochemistry, 3/e © 2006 John Wiley & Sons

Enzymes and coenzymes of the pyruvate dehydrogenase complex Enzyme Abbreviation Coenzyme

Pyruvate dehydrogenase	E_1
Dihydrolipoyl transacetylase	E_2
Dihydrolipoyl dehydrogenase	E_3

Table 16-1 Concepts in Biochemistry, 3/e © 2006 John Wiley & Sons

Table 16.1

- VITAMIN B₁ (thiamine)
 - deficiency

malnutrition, thiaminase rich food (raw fish, shelfish)

myriad of neurodegeneration problems, then death Wernicke's encephalopathy (alcohol related syndrome) lactic acidosis

- VITAMIN B₂ (riboflavine)
 - key role in carbohydrate metabolism
 - Paul Gyorgy (1920s)
 - multiple role (electron carriers, oxidoreduction)

Figure 44–10. Riboflavin and the coenzymes flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD).

Table 16.1 Enzymes and coenzymes of the pyruvate dehydrogenase complex

Enzyme	Abbreviation	Coenzyme
Pyruvate dehydrogenase	E_1	Thiamine pyrophosphate (TPP)
Dihydrolipoyl transacetylase	E_2	Lipoamide, coenzyme A (CoASH)
Dihydrolipoyl dehydrogenase	E_3	Flavin adenine dinucleotide (FAD), nicotinamide adenine
		dinucleotide (NAD ⁺)

Table 16-1 Concepts in Biochemistry, 3/e © 2006 John Wiley & Sons

Figure 16-3 Concepts in Biochemistry, 3/e © 2006 John Wiley & Sons

- VITAMIN B₂ (riboflavin) food coloring (orange)
 - deficiency

malnutrition, widespread but usually not fatal

cracked red lips, inflammation in mouth, sore throat iron deficiency anemia

- Niacin not strictly a vitamin
 - can be synthesized from tryptophan
 - Hugo Weidel (1873)
 - multiple role (electron carriers, oxidoreduction)

Figure 44–11. Niacin (nicotinic acid and nicotinamide) and nicotinamide adenine dinucleotide (NAD). Asterisk shows the site of phosphorylation in NADP.

- Niacin
 - deficiency malnutrition

pellagra (tryptophan and niacin deficiency) Hartnup disease (genetic pellagra, tryptophan loss due to enzyme malfunction)

toxic above 500 mg/day

- Vitamin B₆
 - amino acid and glycogen metabolism, and steroid hormone action
 - Paul Gyorgy (1934)

pyridoxine

- Vitamin B₆
 - deficiency malnutrition

skin problems (seborrhoeic dermatitis) neurological problems

could be toxic loss of proprioception

- Vitamin B₁₂
 - amino acid and glycogen metabolism, and steroid hormone action
 - 1940s, structure, synthesis 1950-60s

• Vitamin B₁₂

Figure 44–14. Homocysteine and the "folate trap." Vitamin B₁₂ deficiency leads to impairment of methionine synthase, resulting in accumulation of homocysteine and trapping folate as methyltetrahydrofolate.

Vitamin B₁₂
 deficiency

malnutrition

pernicious anemia

- Folic acid, folates (also known as vitamin B_9)
 - nucleotide synthesis
 - Lucy Wills, 1931 (prevention of anemia during pregnancy)

- folates
 - deficiency malnutrition

megaloblastic anemia (with B₁₂) spina bifida

Biotin (vitamin H or B₇)
transfer of CO₂, citric acid cycle

Figure 44–17. Biotin, biocytin, and carboxy-biocytin.

- biotin
 - deficiency hair loss sebhorreic dermatitis

- Panthotenic acid (also known as vitamin B_5)
 - carrier of acetyl radical

- Ascorbic acid (also known as vitamin C)
 - a sugar acid
 - antioxidative properties
 - Walter Haworth, Albert Szentgyorgyi, 1920s
 - coenzyme for two group of hydrolases: dopamine β-hydroxylase peptidylglycin hydroxylase lysin hydroxylases

- Vitamin C
 - deficiency

scurvy

deficiency in collagen synthesis fragility of blood capillaries

- excess vitamin C

potential benefits

Minerals

Table 44–2. Classification of minerals according to their function.

Function	Mineral	
Structural function	Calcium, magnesium, phosphate	
Involved in membrane function	Sodium, potassium	
Function as prosthetic groups in enzymes	Cobalt, copper, iron, molyb- denum, selenium, zinc	
Regulatory role or role in hormone action	Calcium, chromium, iodine, magnesium, manganese, sodium, potassium	
Known to be essential, but function unknown	Silicon, vanadium, nickel, tin	
Have effects in the body, but essentiality is not established	Fluoride, lithium	
May occur in foods and known to be toxic in excess	Aluminum, arsenic, antimony, boron, bromine, cadmium, ce- sium, germanium, lead, mercury, silver, strontium	