

Medicinal Chemistry/ CHEM 458/658

Chapter 9- Enzymes

Bela Torok Department of Chemistry University of Massachusetts Boston Boston, MA

Introduction

- Enzymes biocatalyst
 - usually large protein molecules (apoenzymes)
 - some RNA molecules (ribozymes)
 - sometimes metal is involved (metalloenzymes)

some enzymes require coenzyme/metal ions

Apoenzyme + Coenzyme/cofactor = Holoenzyme

Introduction

• Enzymes

Enzymes can be produced from inactive proteins (proenzymes/ zymogens)

Enzymes with different structures can catalyze the same reaction: isoenzymes or isozymes

Classification

• The International Union of Biochemistry - ase suffix

Enzyme Commission code : EC

lactate dehydrogenase - EC 1.1.1.27.

Code	Classification	Type of reaction catalyzed
1	Oxidoreductases	Oxidations and reductions
2	Transferases	Intermolecular transfer of groups
3	Hydrolases	Hydrolysis of various functional groups
4	Lyases	Cleaveage of bonds by non-oxidative or non-hydrolytic mechanism
5	Isomerases	Interconversion of isomers
6	Ligases (synthases)	The formation of bonds between molecules

Active Sites and Catalytic Action

• Active site - substrate

- Enzymes are catalysts - they reduce activation energy

Active Sites and Catalytic Action

Allosteric activation

- Covalent modification
 - attachment of a chemical moiety by a covalent bond (regulators)
 - activate or inactivate (switch on/off)
 - modifying/converter enzymes

- Allosteric control
 - reversible binding to an allosteric site activate/deactivate
 - compounds from metabolic pathway or others (effectors, modulators, regulators)
 - allosteric site regulatory site

- Allosteric control
 - Feedback control

- Second modulator (positive modulators)

- Allosteric control
 - Proenzyme control

Specific Nature of Enzyme Action

UMASS

• Role of chirality

Physical Factors of Enzyme Action

• Allosteric vs. feedback regulated enzyme catalysis

- pH, T

Enzyme Kinetics

• Single substrate reactions

$$E + S \Longrightarrow E \longrightarrow E \longrightarrow E + P \longrightarrow E + P$$

- Michaelis – Menten equation

$$V = \frac{V_{\text{max}}[S]}{K_{\text{m}} + [S]}$$
- Lineweaver – Burk equation

$$\frac{1}{V} = \frac{K_{\rm m}}{V_{\rm max} [\rm S]} + \frac{1}{V_{\rm max}}$$

Enzyme Kinetics

Eadie – Hofstee plot

Hanes – Wolf plot

15

Enzyme Kinetics

- The sequential or single displacement reactions $E+A+B \implies A-E-B \implies N-E-P \implies E+P+N$

 $E + A \longrightarrow A - E + B \implies A - E - B \implies N - E - P \longrightarrow E + P + N$ - Double-displacement or ping-pong reactions

• Reversible Inhibitors

 COO^{-}

Fumarate

 COO^{-}

- Reversible Inhibitors
 - Uncompetitive inhibition

 $E+S \implies S-E+I \implies S-E-I$

- Reversible Inhibitors
 - Uncompetitive inhibition of 5α -reductase

- Irreversible Inhibitors
 - Active site directed inhibitors

Most of them are too toxic – research use

• Anti-inflammatory drugs: Aspirin – a case study

• Anti-inflammatory drugs: Aspirin – a case study

aspirin, ibuprofen, naproxen (NSAIDs) – COX 1, 2 inhibition long term use : ulceration of both GI tract, and kidneys

more selective inhibition of COX-2

COX-3 (CNS) target for drugs to decrease pain and fever

• Irreversible binding – suicide inhibitors (K_{cat} or IMBIs)

usually analogs of natural substrate

serine protease thrombin

• Irreversible binding – suicide inhibitors (K_{cat} or IMBIs)

• Irreversible binding – suicide inhibitors (K_{cat} or IMBIs)

26

Irreversible binding – suicide inhibitors (K_{cat} or IMBIs)
 tienilic acid (ticrynafen, diuretic drug)

Irreversibly inhibited enzyme

- penicillin (transpeptidase)
- allopurinol (xanthine oxidase gout)
- eflornithine (ornithine decarboxylase sleeping sickness, hair growth)

- Enzymes and drug design
 - preventing or regulating cell growth

Advantage:

- diversity of enzymes (activity in pathogens vs humans

Disadvantage:

- specificity of the inhibitor
- reversible vs. irreversible

• Sulfonamides (bacteriostatic agents)

• Angiotensin inhibitors (captoril and related drugs)

• Angiotensin inhibitors (captoril and related drugs)

• Angiotensin inhibitors (captoril and related drugs)

• Angiotensin inhibitors (captoril and related drugs)

UMASS. BOSTON

• Cardiovascular diseases – Cholesterol problem

sources of cholesterol

UMASS.

• Cardiovascular diseases – Cholesterol problem

pathways of cholesterol

• Lipoproteins

Table 20-1	Characteristics of the Major Classes of Lipoproteins in Human Plasma						
		Chylomicrons	VLDL	IDL	LDL	HDL	
Density (g · cm ^{−3})		<0.95	<1.006	1.006-1.019	1.019–1.063	1.063-1.210	
Particle diameter (Å)		750-12,000	300-800	250-350	180-250	50-120	
Particle mass (kD)		400,000	10,000-80,000	5000-10,000	2300	175-360	
% Protein ^a		1.5-2.5	5–10	15-20	20-25	40-55	
% Phospholipids ^a		7–9	15–20	22	15-20	20-35	
% Free cholesterol ^a		1–3	5–10	8	7–10	3–4	
% Triacylglycerols ^b		84-89	50–65	22	7–10	3–5	
% Cholesteryl esters ^b		3–5	10–15	30	35–40	12	
Major apolipoproteins		A-I, A-II, B-48, C-I, C-II, C-III, E	B-100, C-I, C-II, C-III, E	B-100, C-I, C-II, C-III, E	B-100	A-I, A-II, C-I, C-II, C-III, D, E	

^aSurface components ^bCore lipids. • 2008 John Wiley & Sons, Inc. All right Hoesterified cholesterol Apolipoprotein B-100

• Solutions for the cholesterol problem

- cholesterol uptake inhibitors

ion-exchange resins – bile salts – excretion

- cholesterol synthesis inhibitors

- both

• Statins – inhibition of cholesterol biosynthesis

Medicine

1964

O

• Statins

Unnumbered figure pg 577 Concepts in Biochemistry, 3/e

Lovastrain (inactive)

Active form of the drug

Mevacor

Enzymes and Drug Resistance

- Changes in enzyme concentration
 - excess enzyme is produced
 - increased production of metabolic enzymes
- An increase in the production of the substrate
- Changes in the structure of the enzyme
- Alternative metabolic pathway

