Tris(2,2'-bipyridine)ruthenium(II) Dichloride Hexahydrate

2,2'-Bipyridine

• 2,2'-bipyridine, commonly abbreviated as *bpy*, functions as a bidentate chelating ligand.

 The bpy in the phosphinic acid/ruthenium chloride solution complexes with the Ru²⁺ produced by the redox reaction, and the complex is precipitated by adding excess Cl⁻ (as KCl), using the common ion effect:

```
Ru^{2+} + 3bpy + 2Cl<sup>-</sup> + 6H<sub>2</sub>O → [Ru(bpy)_3]Cl_2.6H_2O
```

• The $[Ru(bpy)_3]^{2+}$ in the product is actually a mixture of two optical isomers with D_3 symmetry.

[Ru(bpy)₃]²⁺ Electronic Structure

- Second-row transition ions, like Ru^{2+} tend to have larger Δ_0 values and smaller *P* values.
- Also, bpy is a strong-field ligand, which tends to produce large Δ_0 values.
- As a result, $[Ru(bpy)_3]^{2+}$ is a d^6 low-spin case, which is diamagnetic.
- [Ru(bpy)₃]²⁺ has two bands at 428 nm and 454 nm with high extinction coefficients have been assigned to *metal-ligand charge-transfer* (MLCT)
- The absorption of the blue end of the spectrum gives the complex its characteristic red color.
- $[Ru(bpy)_3]^{2+}$ can be made to show *chemiluminescence*.

Chemiluminescence

- *Chemiluminescence* is the production of visible light through a *chemically induced excited state* of a molecule, which relaxes back to the ground state by photon emission.
- *Fluorescence* is a short lifetime *photoluminescence* process (0.5-20 ns) in which a molecule emits a photon from a singlet excited state, thus quickly decaying back to its singlet ground state.
- Both the ground and excited states are singlet states (m = 2S +1).

 $^{1}M + hv \rightarrow ^{1}M^{*} \rightarrow ^{1}M + hv$

• ¹M* can also lose energy by non-radiative processes (thermal motion, vibration, molecular quenching), resulting in no light emission, i.e. non-radiative decay.

- Phosphorescence is a longer lifetime photoluminescence process (μs hours) in which the excited molecule undergoes an intersystem crossing (isc) to a triplet excited state.
- Radiative transition from an excited triplet state to the singlet ground state is quantum mechanically "forbidden" but occurs with low efficiency, resulting in longer lifetimes.

Jablonski diagram

Procedure Notes

- Start by preparing the 10 % aqueous acetone solution needed for the first wash by chilling it on ice so that it will be ready when needed.
- A 31 % phosphinic acid solution has been prepared for use in making the NaH_2PO_2 solution.
- Converting 2 mL of the acid to a solution of the sodium salt should take about 6-7 NaOH pellets.
- Once the solution becomes slightly cloudy, add phosphinic acid dropwise until the precipitate just dissolves.
- We will not record a quantitative UV-Vis spectrum of [Ru(bpy)₃]²⁺. Just make up a solution, take a qualitative spectrum, and adjust the concentration if needed to obtain a decent spectrum to be submitted with your report.
- For point 1 of the write-up, simply comment on the purity of the compound on the basis of the number and positions of the bands, compared to the data given in the experimental procedure.
- For the chemiluminescence experiment, adjusting the pH using a 2 M HCl solution (pH indicator paper) and observe the chemiluminescence in the dark.

Redox Chemistry

• Ruthenium is a second-row transition element, under iron in the periodic table.

 $\operatorname{Ru}^{\circ}(4d^{6}5s^{2}) - 2e^{-} \rightarrow \operatorname{Rn}^{2+}(4d^{6}) - e^{-} \rightarrow \operatorname{Ru}^{3+}(4d^{5})$

• Ru³⁺ (*aq*) is a moderate oxidizing agent:

 $Ru^{3+}(aq) + e^- \rightarrow Ru^{2+}(aq)$ $E^{\circ} = +0.249 V$

• In this synthesis Ru³⁺ is reduced with phosphinic acid:

 $H_3PO_2 + H_2O \rightarrow H_3PO_3 + 2H^+ + 2e^ E^o = +0.499 V$ $H_3PO_3 + H_2O \rightarrow H_3PO_4 + 2H^+ + 2e^ E^o = +0.276 V$

• This synthesis uses oven-dried RuCl₃.xH₂O, which is reduced with freshly prepared NaH₂PO₂, sodium phosphinate:

 $H_{3}PO_{2}(aq) + NaOH(aq) \rightarrow NaH_{2}PO_{2}(aq) + H_{2}O$ $H_{2}PO_{2}^{-} + 2H_{2}O \rightarrow H_{2}PO_{4}^{-} + 4H^{+} + 4e^{-}$ $4(Ru^{3+} + e^{-} \rightarrow Ru^{2+})$ $H_{2}PO_{2}^{-} + 2H_{2}O + 4Ru^{3+} \rightarrow H_{2}PO_{4}^{-} + 4H^{+} + 4Ru^{2+}$

Chemiluminescence of [Ru(bpy)₃]²⁺

- In this experiment, $[Ru(bpy)_3]^{2+}$ is mixed with the strong oxidant $S_2O_8^{2-}$ and both are reduced by reaction with Mg(s).
- The reduction product of S₂O₈²⁻ is the highly reactive species SO₄^{•-} which oxidizes [Ru(bpy)₃]⁺ back up to [Ru(bpy)₃]²⁺ in an excited state.

Mg → Mg²⁺ + 2e⁻ [Ru(bpy)₃]²⁺ + e⁻ → [Ru(bpy)₃]⁺ S₂O₈²⁻ + e⁻ → SO₄²⁻ + SO₄^{•-} [Ru(bpy)₃]⁺ + SO₄^{•-} → {[Ru(bpy)₃]²⁺}^{*} + SO₄²⁻

• The excited state species phosphoresces, emitting bright orange light at 610 nm:

```
{[\mathsf{Ru}(\mathsf{bpy})_3]^{2+}}^* \rightarrow {[\mathsf{Ru}(\mathsf{bpy})_3]^{2+}} + h\nu
```