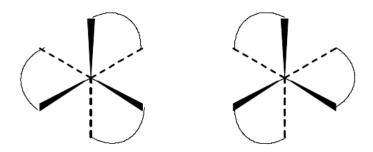

Tris(2,2'-bipyridine)ruthenium(II) Dichloride Hexahydrate

 $[Ru(bpy)_3]Cl_2.6H_2O$


2,2'-Bipyridine

• 2,2'-bipyridine, commonly abbreviated as *bpy*, functions as a bidentate chelating ligand.

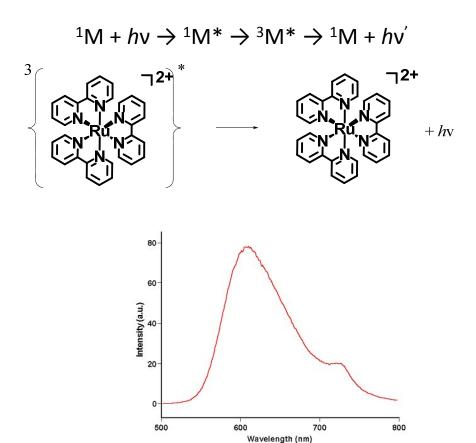
• The bpy in the phosphinic acid/ruthenium chloride solution complexes with the Ru²⁺ produced by the redox reaction, and the complex is precipitated by adding excess Cl⁻ (as KCl), using the common ion effect:

$$Ru^{2+} + 3bpy + 2Cl^- + 6H_2O \rightarrow [Ru(bpy)_3]Cl_2.6H_2O$$

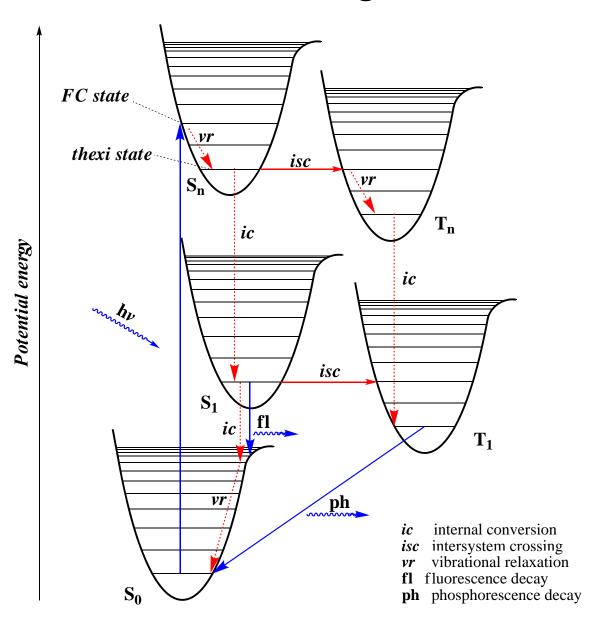
• The $[Ru(bpy)_3]^{2+}$ in the product is actually a mixture of two optical isomers with D_3 symmetry.

[Ru(bpy)₃]²⁺ Electronic Structure

- Second-row transition ions, like Ru^{2+} tend to have larger Δ_0 values and smaller P values.
- Also, bpy is a strong-field ligand, which tends to produce large Δ_0 values.
- As a result, $[Ru(bpy)_3]^{2+}$ is a d^6 low-spin case, which is diamagnetic.
- [Ru(bpy)₃]²⁺ has two bands at 428 nm and 454 nm with high extinction coefficients have been assigned to *metal-ligand charge-transfer* (MLCT)
- The absorption of the blue end of the spectrum gives the complex its characteristic red color.
- $[Ru(bpy)_3]^{2+}$ can be made to show *chemiluminescence*.


Chemiluminescence

- Chemiluminescence is the production of visible light through a chemically induced excited state of a molecule, which relaxes back to the ground state by photon emission.
- Fluorescence is a short lifetime photoluminescence process (0.5-20 ns) in which a
 molecule emits a photon from a singlet excited state, thus quickly decaying back to
 its singlet ground state.
- Both the ground and excited states are singlet states (m = 2S +1).


$$^{1}M + hv \rightarrow ^{1}M^{*} \rightarrow ^{1}M + hv$$

• 1M* can also lose energy by non-radiative processes (thermal motion, vibration, molecular quenching), resulting in no light emission, i.e. non-radiative decay.

- *Phosphorescence* is a longer lifetime *photoluminescence* process (µs hours) in which the excited molecule undergoes an intersystem crossing *(isc)* to a triplet excited state.
- Radiative transition from an excited triplet state to the singlet ground state is quantum mechanically "forbidden" but occurs with low efficiency, resulting in longer lifetimes.

Jablonski diagram

Procedure Notes

- Start by preparing the 10 % aqueous acetone solution needed for the first wash by chilling it
 on ice so that it will be ready when needed.
- A 31 % phosphinic acid solution has been prepared for use in making the NaH₂PO₂ solution.
- Converting 2 mL of the acid to a solution of the sodium salt should take about 6-7 NaOH pellets.
- Once the solution becomes slightly cloudy, add phosphinic acid dropwise until the precipitate just dissolves.
- We will not record a quantitative UV-Vis spectrum of $[Ru(bpy)_3]^{2+}$. Just make up a solution, take a qualitative spectrum, and adjust the concentration if needed to obtain a decent spectrum to be submitted with your report.
- For point 1 of the write-up, simply comment on the purity of the compound on the basis of the number and positions of the bands, compared to the data given in the experimental procedure.
- For the chemiluminescence experiment, adjusting the pH using a 2 M HCl solution (pH indicator paper) and observe the chemiluminescence in the dark.

Redox Chemistry

Ruthenium is a second-row transition element, under iron in the periodic table.

$$Ru^{o} (4d^{6}5s^{2}) - 2e^{-} \rightarrow Rn^{2+} (4d^{6}) - e^{-} \rightarrow Ru^{3+} (4d^{5})$$

• Ru³⁺ (aq) is a moderate oxidizing agent:

$$Ru^{3+}(aq) + e^{-} \rightarrow Ru^{2+}(aq)$$
 $E^{\circ} = +0.249 \text{ V}$

In this synthesis Ru³⁺ is reduced with phosphinic acid:

$$H_3PO_2 + H_2O \rightarrow H_3PO_3 + 2H^+ + 2e^ E^o = +0.499 \text{ V}$$

 $H_3PO_3 + H_2O \rightarrow H_3PO_4 + 2H^+ + 2e^ E^o = +0.276 \text{ V}$

 This synthesis uses oven-dried RuCl₃.xH₂O, which is reduced with freshly prepared NaH₂PO₂, sodium phosphinate:

$$H_3PO_2(aq) + NaOH(aq) \rightarrow NaH_2PO_2(aq) + H_2O$$
 $H_2PO_2^- + 2H_2O \rightarrow H_2PO_4^- + 4H^+ + 4e^ 4(Ru^{3+} + e^- \rightarrow Ru^{2+})$
 $H_2PO_2^- + 2H_2O + 4Ru^{3+} \rightarrow H_2PO_4^- + 4H^+ + 4Ru^{2+}$

Chemiluminescence of $[Ru(bpy)_3]^{2+}$

- In this experiment, $[Ru(bpy)_3]^{2+}$ is mixed with the strong oxidant $S_2O_8^{2-}$ and both are reduced by reaction with Mg(s).
- The reduction product of $S_2O_8^{2-}$ is the highly reactive species $SO_4^{\bullet-}$ which oxidizes $[Ru(bpy)_3]^+$ back up to $[Ru(bpy)_3]^{2+}$ in an excited state.

$$Mg \to Mg^{2+} + 2e^{-}$$

$$[Ru(bpy)_{3}]^{2+} + e^{-} \to [Ru(bpy)_{3}]^{+}$$

$$S_{2}O_{8}^{2-} + e^{-} \to SO_{4}^{2-} + SO_{4}^{\bullet-}$$

$$[Ru(bpy)_{3}]^{+} + SO_{4}^{\bullet-} \to \{[Ru(bpy)_{3}]^{2+}\}^{*} + SO_{4}^{2-}$$

The excited state species phosphoresces, emitting bright orange light at 610 nm:

$$\{[Ru(bpy)_3]^{2+}\}^* \rightarrow [Ru(bpy)_3]^{2+} + hv$$