

Organometallic Chemistry

- Organometallic compounds combine an organic moiety with a metal in a molecule that has direct metal-carbon bonds.
- Ferrocene, first prepared in 1951, ushered in the modern era of organometallic chemistry.
- Originally called "dicyclopentadienyliron."
- Subsequent X-ray analysis proved that ferrocene consisted of an iron(II) ion sandwiched between two parallel cyclopentadienyl (Cp) rings.
- The cyclopentadienyl ligand is just one example of many where the π -system of an organic compound binds directly to a metal atom via a $d-\pi$ interaction.
- The term *hapticity*, denoted η, describes the number of ligand atoms coordinated to the central metal atom, e.g. (η⁵-Cp)₂Fe

Ferrocene Synthesis

- Cyclopentadiene (b.p. 42.5 °C) is produced by cracking dicyclopentadiene (b.p. 170 °C).
- Cyclopentadiene slowly dimerizes back to dicyclopentadiene at room temperature.
- The burgundy-red cyclopentadienyl ion, C₅H₅⁻, can be produced by reaction of cyclopentadiene with KOH in solvent 1,2-dimethoxyethane (ethylene glycol dimethyl ether)

A solution of FeCl₂ in DMSO is slowly added to the solution containing C₅H₅⁻ ions, resulting in yellow-orange ferrocene:

- An inert atmosphere (N₂) is necessary to avoid air oxidation of Fe²⁺ to Fe³⁺, which cannot effectively form ferrocene.
- The FeCl₂ solution is prepared by dissolving $FeCl_2.4H_2O$ in DMSO.
- An open bottle of FeCl₂.4H2O (pale green) oxidizes over time to form brown Fe(III). (*Do not leave container open and unattended*).
- The solution must be prepared and held under an inert atmosphere (N₂) to avoid oxidation.
- FeCl₂.4H₂O dissolves slowly start preparing the solution early and use *mild heating* to speed up the process.

π bonded ligands

Dewar-Chatt-Duncanson model

- Zeise's salt was the first organometallic compound to be isolated in pure form (1825 by William Zeise). The structure was not confirmed until 1838.
- This discovery spawned a tremendous growth in organometallic chemistry and still serves as the simplest example of transition metal-olefin complexation.
- Zeise's salt has become one of the most cited examples of the *Dewar-Chatt-Duncanson model* for metal-olefin complexation.

- The **Dewar-Chatt-Duncanson model** explains the type of chemical bonding between an unsaturated ligand and a metal forming a π complex.
- The π -acid ligand donates electron density into a metal *d*-orbital from a π -symmetry bonding orbital between the carbon atoms.
- The metal donates electrons back from a filled t_{2g} *d*-orbital into the empty π^* antibonding orbital of the ligand (hence the description π -acid ligand).
- Both of these effects tend to reduce the C-C bond order, leading to an elongated C-C distance and a lowering of its vibrational frequency.
- The interaction can cause carbon atoms to "rehybridize", for e.g in metal alkene complexes from *sp*² towards *sp*³, which is indicated by the bending of the hydrogen atoms on the ethylene back away from the metal.
- Often the reactivity of the ligand is reversed from its free state "*umpolung*".

Molecular geometry of Zeise's salt (neutron diffraction)

- The **PtCl₃** *moiety forms a nearly planar group* with the Pt atom.
- The Pt-CI bond trans to the ethylene group (2.340 Å) is significantly longer than the cis Pt-CI bonds (2.302 and 2.303 Å) *trans effect !!*
- The C atoms are approximately equidistant from the Pt atom (2.128 and 2.135 Å).
- The distance from the midpoint of the C-C bond to the Pt atom is 2.022 Å.
- The *C-C distance, 1.375 Å, is slightly longer than the value found in free ethylene (1.337 Å),* indicating some $d\pi$ - $p\pi$ * back-bonding from the platinum atom to C₂H₄.
- Back-bonding is also indicated by a bending of the four hydrogen atoms away from the Pt atom.

...some other classic examples of organometallic bonding interactions:

The Electronic Structure of Ferrocene

• The two cyclopentadienyl (Cp) rings of ferrocene may be orientated in the two extremes of either an eclipsed (D_{5h}) or staggered (D_{5d}) conformation.

- The energy of rotation about the Fe-Cp axis is very small (~ 4 kJmol⁻¹) and ground state structures of ferrocene may show either of these conformations.
- The primary orbital interactions that form the metal-ligand bonds in ferrocene occur between the Fe *d*-orbitals and the π -orbitals of the Cp ligand.
- The D_{5d} point group representations simplify the symmetry matching of ligand molecular orbitals and metal atomic orbitals.
- If D_{5d} symmetry is assumed, so that there is a centre of symmetry in the ferrocene molecule through the Fe atom there will be centro-symmetric (g) and anti-symmetric (u) combinations.

• The five *p*-orbitals on the planar Cp^{-} ring (D_{5h} symmetry) can be combined to produce five molecular orbitals.

The π -molecular orbitals of the cyclopentadienyl ring (D_{5h})

- One combination has the full symmetry of the ring (a_2)
- There are two doubly degenerate combinations $(e_1 \text{ and } e_2)$ having one and two nodal planes orthogonal to the plane of the ring.
- The relative energies of these orbitals increase as the number of nodal planes (0, 1, 2) increases.
- The a_2 and e_1 orbitals are both fully occupied in the electronic configuration of the Cp⁻ anion whereas the e_2 orbitals are net anti-bonding and are unfilled.
- For a bis-cyclopentadienyl metal complex $(\eta^5-Cp)_2M$, such as ferrocene, the π orbitals of the two Cp ligands are combined pairwise to form the symmetry-adapted
 linear combination of molecular orbitals (SALC's).

- To form the SALC orbitals, the sum and difference of corresponding molecular orbitals on the Cp ligand must be taken, e.g. $(\psi_1 + \psi_1)$, $(\psi_1 \psi_1)$; $(\psi_2 + \psi_2)$, $(\psi_2 \psi_2)$ etc.
- For example, $|\psi_1 + \psi_1|$ gives rise to a molecular orbital of a_{1g} symmetry.
- Overall, this gives rise to three sets of ligand molecular orbitals of gerade (g) and ungerade (u) symmetry with respect to the centre of inversion;
 - > a low lying filled bonding pair of a_{1g} and a_{2u} symmetry
 - > a filled weakly bonding pair of e_{1g} and e_{1u} symmetry
 - > an unfilled anti-bonding pair of e_{2g} and e_{2u} symmetry.

SALC orbitals for a (η^5 -Cp)₂M complex; $\Gamma_{\pi} = A_{1g} + A_{2u} + E_{1g} + E_{1u} + E_{2g} + E_{2u}$

 e_{2g}

 a_{2u}

• The metal orbitals transform as

$$A_{1g}(d_z^2, s) + A_{2u}(p_z) + E_{1u}(p_x, p_y) + E_{1g}(d_{yz}, d_{xz}) + E_{2g}(d_x^2 - d_y^2, d_{xy})$$

• Reducible representation of SALC's :

$$\Gamma_{\pi} = A_{1g} + A_{2u} + E_{1g} + E_{1u} + E_{2g} + E_{2u}$$

- By considering the SALC orbitals and how overlap with metal atomic orbitals can be affected the molecular orbital bonding picture of ferrocene can be constructed.
- For example, the a_{1g} SALC orbital can in theory overlap with the Fe 4s and $3dz^2$ orbitals as they are also of a_{1g} symmetry. This interaction gives rise to the bonding and anti-bonding molecular orbitals of the complex a_{1g} and a_{1g}^* respectively.
- Each combination of ligand molecular orbitals and metal molecular orbitals leads to a bonding molecular orbital [$(\psi_{\text{ligand molecular orbital}})+(\psi_{\text{metal atomic orbital}})$] and a corresponding anti-bonding molecular orbital [$(\psi_{\text{ligand molecular orbital}})-(\psi_{\text{metal atomic orbital}})$] providing that the energies of the two component sets are sufficiently close for overlap.

Symmetry matching of SALC orbitals with the metal atomic orbitals

*a*_{1u}

> π

δ

σ

A qualitative molecular orbital diagram for ferrocene (D_{5d})