

Organometallic Chemistry

- Organometallic compounds combine an organic moiety with a metal in a molecule that has direct metal-carbon bonds.
- Ferrocene, first prepared in 1951, ushered in the modern era of organometallic chemistry.
- Originally called "dicyclopentadienyliron."
- Subsequent x-ray analysis proved that ferrocene consisted of an iron(II) ion sandwiched between two parallel cyclopentadienyl (Cp) rings.
- The cyclopentadienyl ligand is just one example of many where the π -system of an organic compound binds directly to a metal atom via a $Md(\pi)-p(\pi)$ interaction.
- The term *hapticity*, denoted η , describes the number of ligand atoms coordinated to the central metal atom, e.g. $(\eta^5$ -Cp)₂Fe

π bonded ligands

alkene complexes

alkyne complexes

allyl complexes

diene complexes

cyclopentadienyl complexes

arene complexes

metallacycles

$oldsymbol{\eta}^1$ -coordination	Formal	# of e- donated		ormal	# of e- donated
$ \begin{array}{c} $	-1	2	M η^{6} -arene	0	6
\mathbf{M} η^{1} -alkenyl	-1	2	$\frac{M}{M}$	0	2
$R = M$ η^{l} -alkynyl	-1	2	$\mathbf{R} = \mathbf{H}$ \mathbf{M} η^2 -alkyne	0	2
\mathbf{H} \mathbf{M} η^1 -Cp (cyclopentadienyl)	-1	2	M η ⁵ -Cp (cyclopentadienyl)	-1	6
η^{1} -allyl	-1	2	$ \begin{pmatrix} \mathbf{M} = \mathbf{M} \\ \mathbf{\eta}^{3} - \text{allyl} \end{pmatrix} $	-1	4
η^{1} -acetate	-1	2	η^2 -acetate	-1	4

• Common unsaturated π donating ligands encountered in organotransition-metal chemistry together with the respective numbers of electrons relevant to the application of the 18 VE rule.

Transition metal alkene complexes

- Zeise's salt was the first organometallic compound to be isolated in pure form (1825 by William Zeise). The structure was not confirmed until 1838.
- This discovery spawned a tremendous growth in organometallic chemistry and still serves as the simplest example of transition metal-olefin complexation.
- Zeise's salt has become one of the most cited examples of the **Dewar-Chatt-Duncanson model** for metal-olefin complexation.

- The **Dewar-Chatt-Duncanson model** explains the type of chemical bonding between an unsaturated ligand and a metal forming a π complex.
- The π -acid ligand donates electron density into a metal d-orbital from a π -symmetry bonding orbital between the carbon atoms.
- The metal donates electrons back from a filled t_{2g} d-orbital into the empty π^* antibonding orbital of the ligand (hence the description π -acid ligand).
- Both of these effects tend to reduce the C-C bond order, leading to an elongated C-C distance and a lowering of its vibrational frequency.
- The interaction can cause carbon atoms to "rehybridize", for e.g in metal alkene complexes from sp^2 towards sp^3 , which is indicated by the bending of the hydrogen atoms on the ethylene back away from the metal.
- Often the reactivity of the ligand is reversed from its free state "umpolung".

Molecular geometry of Zeise's salt (neutron diffraction)

- The PtCl₃ moiety forms a nearly planar group with the Pt atom.
- The Pt-CI bond trans to the ethylene group (2.340 Å) is significantly longer than the cis Pt-CI bonds (2.302 and 2.303 Å) *trans effect !!*
- The C atoms are approximately equidistant from the Pt atom (2.128 and 2.135 Å).
- The distance from the midpoint of the C-C bond to the Pt atom is 2.022 Å.
- The *C-C distance, 1.375 Å, is slightly longer than the value found in free ethylene (1.337 Å),* indicating some $d\pi$ - $p\pi$ * back-bonding from the platinum atom to C_2H_4 .
- Back-bonding is also indicated by a bending of the four hydrogen atoms away from the Pt atom.

...some other classic examples of organometallic bonding interactions:

Metal Hydride

Metal Dihydrogen

Metal Carbonyl

Metal Phosphine

Transition metal alkyne complexes

- Alkynes behave in ways broadly similar to alkenes, but being more electronegative, they tend to encourage back donation and bind more strongly.
- The substituents tend to fold back away from the metal by 30°-40° in the complex, and the M-C distances are slightly shorter than in the corresponding alkene complexes.

Why are alkynes more electronegative than alkenes?

Transition metal allyl complexes

- The allyl group, commonly a spectator ligand, binds in one of two ways.
- In the η^1 form it is a simple X-type ligand like Me
- In the η^3 form it acts as a LX enyl ligand.
- It is often useful to think in terms of the resonance forms (2e + 1e donor)

covalent model: 3e donor (0 charge) ionic model: 4e donor (-1 charge)

Transition metal diene complexes

- The η^4 diene ligand usually acts as a 4e donor in its cisoid conformation (L₂ form).
- The corresponding enedial (LX₂) form can also be described as a *metalacyclopropane*.

• The L₂ form is rarely seen with the LX₂ form becoming more important as the back donation increases.

The Electronic Structure of Ferrocene

- The two cyclopentadienyl (Cp) rings of ferrocene may be orientated in the two extremes of either an eclipsed (D_{5h}) or staggered (D_{5d}) conformation.
- The energy of rotation about the Fe-Cp axis is very small (~ 4 kJmol⁻¹) and ground state structures of ferrocene may show either of these conformations.
- There is also very little difference in electronic states between the D_{5h} and D_{5d} symmetries however the D_{5d} point group representations are used here in the description of the electronic structure of ferrocene as they simplify the symmetry matching of ligand molecular orbitals and metal atomic orbitals.
- The primary orbital interactions that form the metal-ligand bonds in ferrocene occur between the Fe orbitals and the π -orbitals of the Cp ligand.
- If D_{5d} symmetry is assumed, so that there is a centre of symmetry in the ferrocene molecule through the Fe atom there will be centro-symmetric (g) and anti-symmetric (u) combinations.
- The five p-orbitals on the planar Cp ring (D_{5h} symmetry) can be combined to produce five molecular orbitals.

The $\pi\text{-molecular}$ orbitals of the cyclopentadienyl ring (D $_{\text{5h}}$)

- One combination has the full symmetry of the ring (a_2)
- There are two doubly degenerate combinations $(e_1 \text{ and } e_2)$ having one and two planar nodes at right angles to the plane of the ring.
- The relative energies of these orbitals increase as the number of nodes increases.
- The a_2 and e_1 orbitals are both fully occupied in the electronic configuration of the Cp⁻ anion whereas the e_2 orbitals are net anti-bonding and are unfilled.
- For a bis-cyclopentadienyl metal complex $(\eta^5\text{-Cp})_2M$, such as ferrocene, the π -orbitals of the two Cp ligands are combined pairwise to form the symmetry-adapted linear combination of molecular orbitals (SALC's).

- To do this, the sum and difference of corresponding molecular orbitals on the Cp ligand must be taken, e.g. $(\psi_1+\psi_1)$, $(\psi_1-\psi_1)$; $(\psi_2+\psi_2)$, $(\psi_2-\psi_2)$ etc.
- For example, ' ψ_1 + ψ_1 ' gives rise to a molecular orbital of a_{1g} symmetry.
- Overall, this gives rise to three sets of ligand molecular orbitals of gerade (g) and ungerade
 (u) symmetry with respect to the centre of inversion;
 - \succ a low lying filled bonding pair of a_{1g} and a_{2u} symmetry
 - \succ a filled weakly bonding pair of e_{1g} and e_{1u} symmetry
 - \succ an unfilled anti-bonding pair of e_{2g} and e_{2u} symmetry.

SALC's for a $(\eta^5$ -Cp)₂M complex; $\Gamma_{\pi} = A_{1g} + A_{2u} + E_{1g} + E_{1u} + E_{2g} + E_{2u}$

The metal orbitals transform as

$$A_{1g}(d_z^2, s) + A_{2u}(p_z) + E_{1u}(p_x, p_y) + E_{1g}(d_{yz}, d_{xz}) + E_{2g}(d_x^2 - d_y^2, d_{xy})$$

reducible representation of SALC's :

$$\Gamma_{\pi} = A_{1g} + A_{2u} + E_{1g} + E_{1u} + E_{2g} + E_{2u}$$

- By considering these ligand molecular orbitals and how overlap with metal atomic orbitals can be affected the molecular orbital bonding picture of ferrocene can be constructed.
- For example, the a_{1g} SALC orbital can in theory overlap with the Fe 4s and $3dz^2$ orbitals as they are also of a_{1g} symmetry. This interaction gives rise to the bonding and anti-bonding molecular orbitals of the complex a_{1g} and a_{1g}^* respectively.
- Each combination of ligand molecular orbitals and metal molecular orbitals leads to a bonding molecular orbital $[(\psi_{ligand\ molecular\ orbital})+(\psi_{metal\ atomic\ orbital})]$ and a corresponding anti-bonding molecular orbital $[(\psi_{ligand\ molecular\ orbital})-(\psi_{metal\ atomic\ orbital})]$ providing that the energies of the two component sets are sufficiently close for overlap.

Symmetry matching of the SALC's with the metal atomic orbitals

A qualitative molecular orbital diagram for ferrocene (D_{5d})

Ferrocene Synthesis

Cyclopentadiene (b.p. 42.5 °C) is produced by cracking dicyclopentadiene (b.p. 170 °C):

- Cyclopentadiene slowly dimerizes back to dicyclopentadiene at room temperature.
- The burgundy-red cyclopentadienyl ion, C₅H₅⁻, can be produced by reaction of cyclopentadiene with KOH in solvent 1,2-dimethoxyethane (ethylene glycol dimethyl ether)

• A solution of FeCl2 in DMSO is slowly added to the solution containing $C_5H_5^-$ ions, resulting in yellow-orange ferrocene:

$$2C_5H_5^- + Fe^{2+} \rightarrow (\eta^5 - C_5H_5)_2Fe$$

- An inert atmosphere (N_2) is necessary to avoid air oxidation of Fe²⁺ to Fe³⁺, which cannot effectively form ferrocene.
- The FeCl₂ solution is prepared by dissolving FeCl₂.4H₂O in DMSO.
- An open bottle of FeCl₂.4H2O (pale green) oxidizes over time to form brown Fe(III).
 - > Do not use any crystals that are brown.
- The solution must be prepared and held under an inert atmosphere (N_2) to avoid oxidation.
- FeCl₂.4H₂O dissolves slowly start preparing the solution early and use *mild* heating to speed up the process.

- Our synthetic procedure uses very small volumes in a 5-mL round bottom flask.
- An inert atmosphere is maintained by N₂ flow through a pair of hypodermic needles.
- First, a KOH/dimethoxymethane solution is prepared in the flask.
- A FeCl₂/DMSO solution is prepared in a test tube, also under N₂, for later addition.
- Cyclopentadiene is injected into the flask with the KOH solution, causing $C_5H_5^-$ ion (purple) to form.
- Injecting the $FeCl_2/DMSO$ solution into the $C_5H_5^-$ solution causes ferrocene to form.
- To isolate the crude ferrocene, pour the dark slurry into a mixture of 4.5 mL of 6 M HCl solution and 5 g of ice in a 30-mL beaker.
- Collect the crude product by filtration on a Hirsh funnel.

- The crude ferrocene prepared in this synthesis is a dull yellow-orange powder.
- Pure ferrocene can be obtained by sublimation at atmospheric pressure.
- The easiest way to carry out the sublimation is with two small same-sized Petri dish halves, placed on top of each other, and *mildly heated on a warm hot plate*.
- Overheating will scorch the crude product without sublimation, resulting in poor yield.
- Sublimed ferrocene has shiny, orange, crystalline flakes.
- The purified ferrocene will be used to record an IR spectrum and in a later experiment as a standard for cyclic voltammetry.