CHEMSUSCHEM

DOI: 10.1002/cssc200700087

Photochemical Conversion of Solar Energy

Vincenzo Balzani,* Alberto Credi, and Margherita Venturia

In memory of Giacomo Gamician (1857-1922) in the 150th anniversary of his birth

Artificial

Photosynthesis

Professor Jonathan Rochford Department of Chemistry University of Massachusetts, Boston

Global Energy Consumption vs. CO₂ Emissions

- Today's primary global energy consumption is reported at 15 TW.
- 20% US + 18% China totals almost half of global energy consumption.
- Estimated global energy consumption of 28 TW needed annually by 2050.

International Energy Outlook 2009 (<u>http://www.eia.doe.gov/oiaf/ieo/index.html</u>)

Statistical review of world energy, annual review by BP 2009

(<u>http://www.bp.com/productlanding.do?categoryId=6929&co</u> <u>ntentId=7044622</u>)

Renewable Energy Resources

Solar 1.2 x 10⁵ TW total 600 TW actual

Wind 2-4 TW extractable

Tide/Ocean currents 2 TW gross

> Geothermal 12 TW gross

Biomass 5-7 TW gross (all cultivable land not used for food)

Hydroelectric 4.6 TW gross 1.6 TW feasible

Energy gap:

+ 14 TW by 2050 + 33 TW by 2100

Photosynthesis – Natures Power Generator

- Can we replicate it ?
- Photosynthesis can be separated into four fundamental processes:
 - 1. Light harvesting
 - 2. Photoinduced charge separation.
 - 3. The oxidation of water to dioxygen (OEC)
 - 4. The reduction of carbon dioxide (NADPH)

Anatomy of the leaf

• In plants, the primary photosynthetic events take place in the highly folded, discshaped thylakoid membrane vesicles inside chloroplasts.

1. Light Harvesting

A spectrum of incident solar radiation at the Earth's surface featuring superimposed absorption spectra of chlorophyll a (—), chlorophyll b (—), bacteriochlorophyll a (—) and bacteriochlorophyll b (—). [recorded in methanol/ethanol solution].

Energy Transfer

- The energy transfer is made possible by a special arrangement of many chlorophyll chromophores in a network of 'antenna pigments'.
- These chromophores are arranged in spatial proximity and a certain, well-defined orientation; they are able to 'funnel' the light energy to the actual reaction centers with about 95 % efficiency within 10-100 ps.
- In physical terms this Forster mechanism of 'resonance transfer' proceeds via spectral overlap of emission bands of the exciton source with absorption bands of the exciton acceptor.
- This kind of mechanism also exists for the exciton transfer from other, higher energies absorbing pigments to the reaction centers (energy transfer along an energy gradient) so that the light harvesting complexes of the photosynthetic membrane feature a spatially as well as spectrally optimized cross section for photon capture.

Föster Energy Transfer aka Fluorescence Energy Transfer (FRET)

 A donor chromophore, initially in its electronic excited state, may transfer energy to an acceptor chromophore (in proximity, typically less than 10 nm) through nonradiative dipole–dipole coupling.

Dexter Energy Transfer

- Requires a wavefunction overlap between the donor and acceptor (i.e. physical communication) and is therefore restricted to short distances; typically of the order 15-20 Å.
- The excited state may be exchanged in a single step, or in two separate charge exchange steps.
 Sometimes described as electron transfer but overall net-energy transfer occurs.

Electron Transfer - PSII reaction center

• Electronic excitation of the dimer leads to a primary charge separation within a very short time.

Solar cell efficiencies (2008)

Table I.	le I. Confirmed terrestrial cell and submodule efficiencies measured under the global AN	A1.5 spectrum (1000 W/m^2) at
	25°C (IEC 60904-3: 2008, ASTM G-173-03 global)	

Classification ^a	Effic. ^b (%)	Area ^c (cm^2)	$V_{\rm oc}$ (V)	$J_{\rm sc}$ (mA/cm ²)	FF ^d (%)	Test centre ^e (and date)	Description	
Silicon								^a CIGS = CuInGaSe2; a-Si =
Si (crystalline)	$\textbf{25.0} \pm \textbf{0.5}$	4.00 (da)	0.705	42.7	82.8	Sandia (3/99) ^f	UNSW PERL ¹²	allov.
Si (multicrystalline)	$\textbf{20.4} \pm \textbf{0.5}$	1.002 (ap)	0.664	38.0	80.9	NREL (5/04) ^f	FhG-ISE ¹³	^b Effic. = efficiency.
Si (thin film transfer)	$\textbf{16.7} \pm \textbf{0.4}$	4.017 (ap)	0.645	33.0	78.2	FhG-ISE (7/01) ^f	U. Stuttgart $(45 \mu m \text{ thick})^{14}$	c(ap) = aperture area; (t) =
Si (thin film submodule)	$\textbf{10.5} \pm \textbf{0.3}$	94.0 (ap)	0.492 ^g	29.7 ^g	72.1	FhG-ISE (8/07) ^f	CSG Solar (1-2 µm on	illumination area.
-							glass; 20 cells) ¹⁵	$^{d}FF = fill factor.$
III-V cells								eFhG-ISE = Fraunhofer
GaAs (crystalline)	$\textbf{26.1} \pm \textbf{0.8}$	0.998 (ap)	1.038	29.7	84.7	FhG-ISE (12/07) ^f	Radboud U. Nijmegen ⁶	Institut für Solare
GaAs (thin film)	$\textbf{26.1} \pm \textbf{0.8}$	1.001 (ap)	1.045	29.5	84.6	FhG-ISE (07/08) ^f	Radboud U. Nijmegen ⁶	Japan Quality Assurance;
GaAs (multicrystalline)	$\textbf{18.4} \pm \textbf{0.5}$	4.011 (t)	0.994	23.2	79.7	NREL (11/95) ^f	RTI, Ge substrate ¹⁶	AIST = Japanese National
InP (crystalline)	$\textbf{22.1} \pm \textbf{0.7}$	4.02 (t)	0.878	29.5	85.4	NREL (4/90) ^f	Spire, epitaxial ¹⁷	Institute of Advanced
Thin film chalcogenide								Technology
CIGS (cell)	$19.4\pm0.6^{\rm h}$	0.994 (ap)	0.716	33.7	80.3	NREL (1/08) ^f	NREL, CIGS on glass ¹⁸	^f Recalibrated from original
CIGS (submodule)	$\textbf{16.7} \pm \textbf{0.4}$	16.0 (ap)	0.661 ^g	33.6^g	75.1	FhG-ISE $(3/00)^{f}$	U. Uppsala, 4 serial cells ¹⁹	measurement.
CdTe (cell)	$\bf 16.7 \pm 0.5^h$	1.032 (ap)	0.845	26.1	75.5	NREL (9/01) ^f	NREL, mesa on glass ²⁰	⁹ Reported on a 'per cell'
Amorphous/nanocrystalline Si								^h Not measured at an external
Si (amorphous)	9.5 ± 0.3^{i}	1.070 (ap)	0.859	17.5	63.0	NREL (4/03) ^f	U. Neuchatel ²¹	laboratory.
Si (nanocrystalline)	$10.1\pm0.2^{\rm j}$	1.199 (ap)	0.539	24.4	76.6	JQA (12/97)	Kaneka $(2 \mu m \text{ on glass})^{22}$	Stabilised by 800 h, 1 sun
Photochemical								AM1.5 illumination at a cell
Dye sensitised	10.4 ± 0.3^{k}	1.004 (ap)	0.729	22.0	65.2	AIST (8/05) ^f	Sharp ²³	^j Measured under IEC 60904-
Dye sensitised (submodule)	8.2 ± 0.3^{k}	25.45 (ap)	0.705^g	19.1^g	61.1	AIST (12/07) ^f	Sharp, 9 serial cells ²⁴	3 Ed. 1: 1989 reference
Dye sensitised (submodule)	8.2 ± 0.3^{k}	18.50	0.659 ^g	19.9 ^g	62.9	AIST (6/08) ^t	Sony, 8 serial cells ²⁵	spectrum.
Organic								^h Stability not investigated. ^I Stabilised by 174 h 1 sun
Organic polymer	5.15 ± 0.3^{k}	1.021 (ap)	0.876	9.39	62.5	NREL (12/06) ^f	Konarka ²⁶	illumination after 20 h, 5 sun
Organic (submodule)	1.1 ± 0.3^{k}	232.8 (ap)	29.3	0.072	51.2	NREL (3/08) ^f	Plextronics (P3HT/PCBM) ²⁷	illumination at a sample
Multijunction devices								temperature of 508 ℃.
GaInP/GaAs/Ge	$32.0 \pm 1.5^{\text{J}}$	3.989 (t)	2.622	14.37	85.0	NREL (1/03)	Spectrolab (monolithic)	
GaInP/GaAs	30.3 ^j	4.0 (t)	2.488	14.22	85.6	JQA (4/96)	Japan Energy (monolithic) ²⁸	
GaAs/CIS (thin film)	25.8 ± 1.3^{j}	4.00 (t)		_		NREL (11/89)	Kopin/Boeing (4 terminal) ²⁹	
a-Si/µc-Si (thin submodule) ^{1,1}	$11.7 \pm 0.4^{\mathrm{J},\mathrm{I}}$	14.23 (ap)	5.462	2.99	71.3	AIST (9/04)	Kaneka (thin film) ³⁰	13

The Solar Spectrum

Dye-sensitized solar cells (Grätzel cells)

- Dye-sensitized solar cells (DSSCs) are one of the most promising molecular photovoltaics and have been attracting considerable attention since the pioneering study of Grätzel et al. because of the potential of low-cost production.
- In order to improve the solar-to-electric power conversion efficiency (η) , both metal complexes and metal-free organic dyes, as sensitizers of nanocrystalline TiO₂ electrode, have been extensively investigated and developed in terms of optical absorption extension to the red or infrared region through molecular design.
- The highest η for DSCs has so far reached 11 % obtained from Ru polypyridine complexes.

$\eta = \text{maximum power output (P_{max})/ power input (P_{light})}$

Operation of Dye Sensitized Solar Cells

• Charge separation and charge recombination are competitive!

 $\eta = \text{maximum power output } (P_{\text{max}}) / \text{power input } (P_{\text{light}})$

Molecular Engineering for DSSCs

- Energy matching of the HOMO and LUMO of the dye with the redox mediator and E_{CB} of the TiO₂ electrode, respectively.
- **Donor-\pi-conjugation-linkage-acceptor (D-\pi-A) structure required for a wide range absorption extending across the UV-vis-NIR spectrum.**
- Anchoring groups such as carboxylic acid or phosphonic acid groups are required for a strong adsorption onto the surface of TiO₂.

Light harvesting in DSSCs

Champion DSSC Dyes

Graetzel M.. *Phil. Trans. Royal Soc.-Math. Phys. Eng. Sci.* 2007, 365, 993. Yu Q. e. atl *ACS Nano.* 2010, 4, 6032. Zeng et. al *Chemistry of Materials* 2010, 22, 1915. Yella et al. *Science* **2011**, *334*, 629-634.

Preparation of TiO₂ nanoparticle films

Rochford J.; Chu D.; Hagfeldt A.; Galoppini E. J. Am. Chem. Soc., 2007, 129, 4655.

TiO₂ & anchoring groups

particle size is 20 nm.

Possible binding modes for a carboxylic acid anchoring group at TiO_2 (M = Ti)

21

The mesoporous nanocrystalline effect

The incident-photon-to-current conversion efficiency **(IPCE)** is plotted as a function of the excitation wavelength.

a) Single-crystal anatase TiO₂.

b) Nanocrystalline TiO₂ anatase film.

Incident photon-to-current conversion efficiency

The (IPCE), sometimes referred to also as "external quantum efficiency" (EQE), corresponds to the number of electrons measured as photocurrent in the external circuit divided by the *monochromatic photon flux* that strikes the cell.

IPCE = LHE_{λ}. ϕ_{inj} . η_{coll}

 $\begin{array}{l} \textit{LHE}_{\lambda} \ = \ \text{light harvesting efficiency} \\ \varphi_{\textit{inj}} \ = \ \textit{quantum yield for charge injection} \\ \eta_{\textit{coll}} \ = \ \textit{charge collection efficiency at FTO electrode} \end{array}$

IPCE = monochromatic efficiency

APCE = monochromatic efficiency corrected for transmitted photons

DSSC efficiency

By increasing the resistive load on an irradiated cell continuously from zero (*short circuit*) to a very high value (*open circuit*) one can determine the maximum-power point, the point that maximizes V×I; i.e. the load for which the cell can deliver maximum electrical power at that level of irradiation.

(The output power is zero in both the short circuit and open circuit extremes)

- $V_{\rm OC}$ = open circuit voltage
- *I*_{SC} = short circuit current

A = area

 $J_{\rm SC}$ = short circuit current density = $I_{\rm SC}$ / A

 $ff = fill factor = A_1 / A_2$

 I_0 = incident light flux (e.g. AM 1.5)

Determining Fill Factor

