Copper Chemistry

Cu: 1s²2s²2p⁶3s²3p⁶4s¹3d¹⁰

F. A. Cotton, G. Wilkinson, C. A. Murillo, M. Bochman, *Advanced Inorganic Chemistry*, 6th ed., John Wiley, New York, pp. 855-864.

- Cu has a single *s* electron in its *fourth* shell. One may be inclined to think, based on its electronic configuration, that it has similar properties to the alkali metals, in particular K, however this is not the case.
- The filled *d* shell is much less effective than a filled *p* shell at shielding the *s* electron from the nuclear charge (*29 protons*), such that the first ionization energy of Cu is higher than that of its closest alkali relative K (*19* protons).

K :
$$1s^2 2s^2 2p^6 3s^2 3p^6 4s^1$$
Cu : $1s^2 2s^2 2p^6 3s^2 3p^6 4s^1 3d^{10}$ **4**.34 eV7.73 eV**K**⁺ : $1s^2 2s^2 2p^6 3s^2 3p^6$ **Cu**⁺ : $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10}$ **31**.63 eV20.29 eV**K**²⁺ : $1s^2 2s^2 2p^6 3s^2 3p^5$ **Cu**²⁺ : $1s^2 2s^2 2p^6 3s^2 3p^6 3d^9$

Ionization energies (eV)

- In contrast, the second (and third) ionization energy of Cu is much lower than that of K. Why?
- Its valence *d* electrons give Cu transition metal character with the existence of highly colored paramagnetic Cu(II) complexes having a *d*⁹ valence band configuration.
- The *d* shell electrons impart *noble* character to Cu complexes resulting in *covalent character* justifying its Group 11 position in the periodic table relative to the highly *ionic* group 1 alkali metals. As a result solid state Cu systems display higher lattice energies than the alkali metals, consistent with its smaller atomic radius:

Na ⁺	0.95 Å
K ⁺	1.33 Å
Cu+	0.93 Å

• The high covalency of elemental Cu, as a result of its interatomic *sigma*-bonding, contributes to its *high thermal and electrical conductivity* (only second to Ag).

Cu(II) is the *more stable* state of copper

- Configuration 3d⁹ with one unpaired electron (paramagnetic)
- Incomplete 3d subshell permits d-d state-to-state electronic transitions, which causes color (typically blue or green)

VS.

Cu(II)

- Cu(I) is an unstable state of copper
- Configuration 3d¹⁰ with no unpaired electrons (diamagnetic)

Complete 3*d* subshell precludes *d*-*d* state-to-state transitions, so Cu(I) is *colorless* like isoelectonic Zn(II), unless they are paired with a paramagnetic anion.

Cu(II)

- Most copper(II) compounds exhibit distortions from idealized octahedral geometry due to the *Jahn-Teller effect*.
- In CuCl₂(H₂O)₂ the copper can be described as a highly distorted O_h complex, the Cu(II) center being surrounded by two water ligands and four chloride ligands, which bridge asymmetrically to other Cu centers.
- Copper(II) chloride dissociates in aqueous solution to give the blue color of [Cu(H₂O)₆]²⁺ and yellow or red color of the halide complexes of the formula [CuCl_{2+x}]^{x-}. Concentrated solutions of CuCl₂ appear green because of the combination of these various chromophores (re. Cu(II) carbonates and *verdigris*)

Cu(l)

- Although CuCl is insoluble in water, it dissolves in aqueous solutions containing suitable Lewis base donors.
- It forms complexes with halide ions, for example forming H₃O⁺ CuCl₂⁻ with concentrated hydrochloric acid. It also dissolves in solutions containing CN⁻, S₂O₃²⁻, and NH₃ to give corresponding complexes.
- Although only poorly soluble in water, its aqueous solutions are unstable with respect to disproportionation into Cu and CuCl₂. In part for this reason samples in air assume a green coloration.

Oxidation of Cu(I)

• In aqueous solution, *Cu(I) is readily oxidized to Cu(II) in the presence of oxygen* (*re*: cytochrome c oxidase)

$4(Cu^+ \rightarrow Cu^{2+} + e^-)$	$E_{Ox}^{o} = -0.153 \text{ V}$
$O_2 + 4H^+ + 4 e^- \rightarrow 2H_2O$	<i>E</i> ^o _{Red} = + 1.229 V
$4Cu^{+} + O_2^{} + 4H^{+} \rightarrow 4Cu^{2+} + 2H_2^{}O$	$E_{cell}^{o} = 1.076 V$

• Moreover, *Cu*(*I*) *undergoes spontaneous disproportionation*:

$Cu^+ \rightarrow Cu^{2+} + e^-$	$E_{Ox}^{o} = -0.153 \text{ V}$
$Cu^+ + e^- \rightarrow Cu$	E_{Red}^{o} = +0.521 V
$2 \text{ Cu}^+ \rightarrow \text{Cu} + \text{Cu}^{2+}$	$E_{cell}^{o} = + 0.368 V$

• Thus ΔG° (= -*n*F*E*°) is negative, i.e. spontaneous for disproportionation.

Stabilizing Cu(I) in Compounds

• Simple Cu(I) compounds that can exist in the <u>presence</u> of water are those with *low-charge anions whose compounds are insoluble in water*:

CuCl, CuBr, CuI, and CuCN,

- In the solid, *stability depends on* the neighboring anion and the resulting *lattice energy* of the ionic solid.
- Copper(I) chloride is made by boiling a solution of HCl(aq) and CuCl₂(aq) in the presence of excess Cu.
- Synthesis takes advantage of the stability of solid CuCl, which makes redox between Cu and Cu²⁺ spontaneous:

 $Cu(s) + Cu²⁺(aq) + 2Cl⁻(aq) \rightarrow 2CuCl(s) \qquad E^{o}_{cell} = +0.442 V$

• In concentrated HCl solution, the actual product is ?

?

In concentrated HCl solution, the dichlorocuprate ion, [CuCl₂]⁻, is the actual product:

 $Cu(s) + Cu^{2+}(aq) + 4 Cl^{-}(aq) \rightleftharpoons 2 [CuCl_2]^{-}(aq)$

• On dilution with water, copper(I) chloride precipitates:

 $[CuCl_2]^-(aq) \rightleftharpoons CuCl(s) + Cl^-(aq)$

 Conversely, if CuCl(s) is added to a chloride solution, it will dissolve due to the driving force of forming the [CuCl₂]⁻(aq) complex.

- The equilibrium can be displaced in either direction.
- In the synthesis, formation of [CuCl₂]⁻(aq) drives the equilibrium to the right (LeChatelier's Principle).
- Anions or bridging ligands that form complexes with Cu⁺ may stabilize Cu⁺ so long as they do not form more stable complexes with Cu²⁺.
- When CuCl(s) is treated with ethylenediamine (en) Cu^+ is oxidized to Cu^{2+} because

....?

Copper(I) Iodide

• Copper(I) iodide precipitates when any Cu(II) salt is added to a KI(aq) solution.

 $2Cu^{2+}(aq) + 4I^{-}(aq) \rightarrow 2CuI(s) + I_2$

• $I^{-}(aq)$ is a strong enough reducing agent to reduce $Cu^{2+}(aq)$ to Cul (s):

$2I^- \rightarrow I_2 + 2e^-$	$E_{Ox}^{o} = -0.54 V$
$2(Cu^{2+} + I^- + e^- \rightarrow CuI)$	<i>E</i> ^o _{Red} = + 0.88 V
$2Cu^{2+} + 4I^{-} \rightarrow 2CuI + I_{2}$	<i>E</i> ^o _{cell} = + 0.34 V

An element of surprise—efficient Cu-functionalized dye-sensitized solar cells

 Dye-sensitized solar cells with carboxylate-derivatized {Cu^IL₂} complexes are surprisingly efficient and offer a long-term alternative approach to rutheniumfunctionalized systems.

Fig. 1 Solid state structure of the $[Cu(3)_2]^+$ cation present in $[Cu(3)_2][PF_6]$ showing the numbering scheme adopted; hydrogen atoms have been omitted for clarity, thermal ellipsoids depicted at 50% probability. Selected bond lengths (Å) and angles (°): Cu1–N1, 2.009(2); Cu1–N2, 2.016(2); Cu1–N3, 2.039(3); Cu1–N4, 2.003(3); N1–Cu1–N2, 80.93(10); N1–Cu1–N3, 122.14(10); N2–Cu1–N3,

Cu(I)-Catalyzed Carboxylative Coupling of Terminal Alkynes, Allylic Chlorides, and CO₂

Wen-Zhen Zhang,* Wen-Jie Li, Xiao Zhang, Hui Zhou, and Xiao-Bing Lu*

State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116012, China

Table 1. Copper-Catalyzed Carboxylative Coupling ofPhenylacetylene, Cinnamyl Chloride, and CO_2^a

Scheme 2. N-Heterocyclic Carbene Copper(I) Complexes

002			
		yield $(\%)^b$	
entry	catalyst	3a	4a
1^c	-	-	-
2	CuCl	10	46
3	CuBr	35	47
4	CuI	28	24
5	CuCl + bpy	23	52
6	CuCl + TMEDA	12	68
7	(IMes)CuCl	3	51
8^d	(IPr)CuCl	<1	91
9^e	(IPr)CuCl	<1	74
10 ^f	(IPr)CuCl	17	-
11^g	(IPr)CuCl	8	26

^{*a*} Reaction conditions: **1a** (2 mmol), **2a** (3 mmol), K₂CO₃ (4 mmol), Cu catalyst (10 mol %), 20 mL of DMF. ^{*b*} Isolated yield. ^{*c*} In the absence of catalyst. ^{*d*} 92% catalyst was recovered after reaction. ^{*e*} 5 mol % catalyst. ^{*f*} In the absence of CO₂. ^{*g*} 0.2 MPa CO₂.

Cul as a co-catalyst in Sonogashira C-C coupling

Cytochrome c oxidase (CcO) -Nature's fuel cell $O_2 + 8H^+ + 4Fe^{2+}(CcO) \longrightarrow 2H_2O + 4H^+ + 4Fe^{3+}(CcO)$

- Cytochrome c oxidase is responsible for
 O₂ consumption in Nature.
- This remarkable enzymatic machine activates dioxygen via proton coupled electron transfer producing two equivalents of water.

