Group 14 : Tin Chemistry

Sn: 1s²2s²2p⁶3s²3p⁶4s²3d¹⁰4p⁶5s²4d¹⁰5p²

A. G. Massey, *Main Group Chemistry*, 2nd ed., John Wiley, New York, pp. 213 – 264.

- Symbol Sn from Latin *stannum*
- One of the longest known elements
- Tin has more stable isotopes (10) than any other element.
- Bronze items from ca. 3500 B.C.E. contain 10-15% Sn alloyed with Cu.
- Cassiterite, mineral SnO₂, found in Britain, was an early source.
- Malaysia, Russia, and Bolivia are current principal sources.
- About 40% of tin used in plating to provide a non-toxic coating for sheet metal and "tin" cans.
- Important component of many alloys.

\triangleright	Solder	50% Sn, 50% Pb
	Aluminum solder	86% Sn, 9% Zn, 5% Al
	Pewter	85% Sn, 6.8% Cu, 6% Bi, 1.7% Sb
	Bronze	80% Cu, 15% Sn, 5% Zn
	Bell metal	78% Cu, 22% Sn
	Babbitt	90% Sn, 7% Sb, 3% Cu

The Group 14 Elements

Element	Electronic Configuration	1 st Ionization Energy (kJmol ⁻¹)	2 nd Ionization Energy (kJmol ⁻¹)	Covalent Radius (Å)
^{12.011} ₆ C	$1s^2 2s^2 2p^2$	1086	2352	0.77
^{28.0855} 14Si	[Ne] 3 <i>s</i> ² 3 <i>p</i> ²	786.1	1576	1.17
^{72.61} 32Ge	[Ar] 3 <i>d</i> ¹⁰ 4 <i>s</i> ² 4 <i>p</i> ²	761.5	1537	1.22
^{118.710} 50Sn	[Kr] 4 <i>d</i> ¹⁰ 5 <i>s</i> ² 5 <i>p</i> ²	708.5 🗸	1412 🗸	1.41
^{207.2} 82Pb	[Xe] 4 <i>f</i> ¹⁴ 5 <i>d</i> ¹⁰ 6 <i>s</i> ² 6 <i>p</i> ²	715.5 ↑	1450 ↑	1.54

- All Group 14 elements have the valence configuration ns^2np^2 .
- Stable carbon and silicon compounds are observed in the +4 state.
- Going down the group the +2 state becomes more stable.

Group 14 Ionization Energies

- The ionization energies for Group 14 elements are irregular due to inner *d* orbitals (Ge, Sn, Pb), inner *f* orbitals (Pb) and relativistic effects (Pb).
- The exceedingly *high energies required to form M⁴⁺ ions (next slide),* coupled to the fact that such ions would be small and highly polarizing, means that the existence of M⁴⁺ cations is highly unlikely.
- **Group 14 compounds are predominantly molecular** with only SnO₂, PbO₂ and the Sn, Pb fluorides thought to have significant ionic character.

In all these compounds, the oxidation state is merely a formalism, because all are molecular (not ionic) compounds.

Group 14 Ionization Energies

 Ionization energy drops dramatically after C, declining slowly through the rest of the group with Pb breaking this trend due to decreased shielding and enhanced relativistic effects.

Inert Pair Effect

- The increasing stability of the lower state (+2) as we descend the Group has been called the "inert pair effect" for the tendency of the ns² configuration to be retained (most prominent for Sn and Pb).
- This has nothing to do with inherent "inertness" of the ns² configuration, but rather *simply a consequence of thermodynamics*.
- Although the energy "cost" of forming M(IV) is high for the lighter elements, the "pay-back" of bond formation is high, too.
- Bond strengths peak at Si, slowly decline through Sn, and then drop off significantly at Pb.
- At Ge and Sn, both M(II) and M(IV) states are stable.
- At Pb, the bond strength is too low to compensate for the slightly higher ionization energy requirement of the Pb(IV) state in many cases. Hence, the +2 state is favored.
- A similar "inert pair" effect is found in groups 13 and 15.

Group 14 MX₄ Bond Enthalpies

Tetravalency of the Group 14 Elements

- From their outer electron configuration of ns^2np^2 , one might expect the Group 14 elements to form covalent compounds on which they bond only to two other atoms using their half-filled *p*-orbitals.
- However, this is contrary to observation because, in the vast majority of their compounds, the Group 14 elements (especially carbon) are tetrahedrally surrounded by four other groups.
- This occurs because it is relatively easy for an ns electron to be promoted to the unfilled np orbital.
- For C the $2s \rightarrow 2p$ promotion energy is 405.8 kJ mol⁻¹, with the ns \rightarrow np promotion energy decreasing slightly as we descend the Group.

- Although the ns → np promotion certainly leaves the element with four unpaired electrons, the electron have all their spins parallel. To obtain the element in its valence 'reacting' state work must be done to randomize the electron spins.^{*}
- Therefore to form MX_4 (X = halide) from the Group 14 element M and X_2 the following energy steps must be considered:

$$M_{(s)} \xrightarrow{\Delta H_{sub}} M_{(g)} \xrightarrow{P} M_{(g)}(s^{1}p^{1}p^{1}p^{1}) \xrightarrow{R} M_{(g)}(valence \ state)$$

$$2X_{2} \xrightarrow{\Delta H_{diss}} 4X \xrightarrow{V}$$

$$P : \text{promotion energy}$$

$$MX_{4}$$

R : electron spin randomization energy

Total energy input =
$$\Delta H_{sub}$$
 + P + R + $2\Delta H_{diss}$

*The hypothetical process of hybridization from $s p_{x,y,z} \rightarrow four sp^3$ orbitals is a mathematical step and requires no energy input.

Total energy input = $\Delta H_{sub} + P + R + 2\Delta H_{diss}$

- This energy has to be regained by the formation of four strong M-X bonds.
- However, the production of MX₂ requires fewer energy-consuming steps:

Total energy input =
$$\Delta H_{sub} + R' + \Delta H_{diss}$$

• But only two M-X bonds are formed to compensate for the required energy input.

- Which process leads to the more thermodynamically stable molecule?
- MX_4 is favored for at least C, Si, Ge and Sn. For example, the enthalpy of formation at 25 °C for CH_2 and CH_4 is +343 kJ mol⁻¹ and -74.9 kJ mol⁻¹, respectively.
- Thus, although the utilization of the $2s^2$ electrons requires a higher initial input of energy, this is more than offset by the formation of two extra stabilizing C-H bonds.
- However, the *M-X covalent bond strength decreases as we descend the group*, with the result that not all Pb-X bonds are capable of supplying the energy required to stabilize the Pb(IV) state with respect to Pb(II).
- PbF_4 , $PbCl_4$ and $PbBr_4$ readily decompose upon heating, e.g.

 $PbCl_4 + \Delta \rightarrow PbCl_2 + Cl_2$

• Pbl₄ is too unstable to exist at room temperature!!

 Although C–X bonds are strong, carbon tetraiodide Cl₄ has significant steric crowding and decomposes on heating or exposure to UV light forming C₂l₄, whose I–C–I angle of 114.2° reduces the strain.

$$2CI_4 \rightarrow I_2C=CI_2 + 2I_2$$

 Except for SnF₄ and PbF₄, all *Group 14 compounds are very volatile, suggesting* covalent bonding with weak van der Waals forces between molecules.

[For organotin compounds SnR_n and SnH_n (n = 2,4) this can render them with a high toxicity]

SnX₄ Halides

• SnX₄ compounds can act as Lewis acids in the presence of excess halide ion.

 $SnX_4 + 2X^- \rightarrow SnX_6^{2-}$

- Lewis acid strength is in the order $SnF_4 > SnCl_4 > SnBr_4 > SnI_4$.
- Snl_4 can also undergo redox with Γ to give Snl_2 .

 $Snl_4 + l^- \rightarrow Snl_2 + l_3^-$

- The resulting solution is brown in polar solvents.
- Except for CX₄, all hydrolyze in water to give various hydrated oxides.
- SnX₄ compounds hydrolyze to give hydrated SnO₂ and HX.

 $SnX_4 + 2H_2O \rightarrow SnO_2 + 4HX$

• Similar reactivity occurs with alcohols.

 Direct reaction of tin metal with iodine in methylene chloride yields Snl₄ as the principal product, with formation of Snl₂ as a side reaction.

 $Sn + 2I_2 \rightarrow SnI_4$

 $Sn + I_2 \rightarrow SnI_2$

- Snl_4 is a red-orange solid; Snl_2 is a yellow-red solid.
- Color due to polarizability of I^- , probably involving charge transfer ($I \rightarrow Sn$).
- SnI_2 is polar, and SnI_4 is non-polar, as a result, SnI_2 is slightly more soluble in CH_2CI_2 .
- Snl₂ is somewhat more ionic and has a higher m.p.

Snl₂ m.p. ≈ 330 °C

Snl₄ m.p. = 143-144 °C

- *Elemental iodine* is harmful if swallowed, inhaled, or ٠ absorbed through the skin.
- It readily sublimes (vaporizes from the solid state) at ٠ atmospheric pressure, especially if warmed.
- It is a lachrymating agent (makes your eyes tear up). ٠

- *Methylene chloride* (b.p. = 40 °C), the solvent in this • preparation, is also harmful if swallowed, inhaled, or absorbed through the skin.
- Exposure may cause nausea, dizziness, and headache. It ٠ is a narcotic at high concentration and a possible carcinogen. Exposure should be minimized.

Reactivity

• Tin is stable toward water and oxygen at 25 °C, but reacts with steam or when heated in oxygen to give SnO₂

 $Sn(s) + 2H_2O(g) \rightarrow SnO_2(s) + 2H_2(g)$ $Sn(s) + O_2(g) \rightarrow SnO_2(s)$

- Tin shows little reaction with dilute HCl or H_2SO_4 , but with dilute HNO_3 it forms $Sn(NO_3)_2$ and NH_4NO_3 .
- Hot conc. HCl gives SnCl₂ and H₂, and hot conc. H₂SO₄ gives SnSO₄ and SO₂.
- In hot KOH(aq), Sn dissolves to give $K_2[Sn(OH)_6]$ and H_2 .
- Note that both +2 and +4 Sn compounds form, showing that both states have comparable stability.
- Which oxidation state forms depends upon the thermodynamics of ionization versus bond stability.

Stille Coupling

• The Stille Coupling is a versatile C-C bond forming reaction between **stannanes** and **halides** or **pseudohalides**, with very few limitations on the R-groups.

$$\begin{array}{c} O \\ R^{1} \\ + \\ R^{2}_{3} SnR^{3} \end{array} \xrightarrow{X \text{ or } R^{1}} X \xrightarrow{Pd(0)} O \\ + \\ R^{2}_{3} SnR^{3} \end{array} \xrightarrow{X \text{ or } R^{1}} X \xrightarrow{Pd(0)} R^{3} \text{ or } X \xrightarrow{R^{3}} R^{3} \xrightarrow{R^{3}}$$

- The main drawback is the **toxicity of the tin compounds** used, and their low polarity, which makes them poorly soluble in water.
- Stannanes are stable, but boronic acids and their derivatives undergo much the same chemistry in what is known as the Suzuki Coupling.
- Improvements in the Suzuki Coupling may soon lead to the same versatility without the safety drawbacks of using tin compounds.

I−SnBu₃

Electron Mobility and Injection Dynamics in Mesoporous ZnO, SnO₂, and TiO₂ Films Used in Dye-Sensitized Solar Cells

Priti Tiwana, Pablo Docampo, Michael B. Johnston, Henry J. Snaith,* and Laura M. Herz*

Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU, United Kingdom

5158

Hierarchical Tin Oxide Octahedra for Highly Efficient Dye-Sensitized Solar Cells

Yu-Fen Wang, Jian-Wen Li, Yuan-Fang Hou, Xiao-Yun Yu, Cheng-Yong Su, and Dai-Bin Kuang*^[a]

© 2010 Wiley-VCH Verlag GmbH& Co. KGaA, Weinheim

Chem. Eur. J. 2010, 16, 8620-8625