Tin

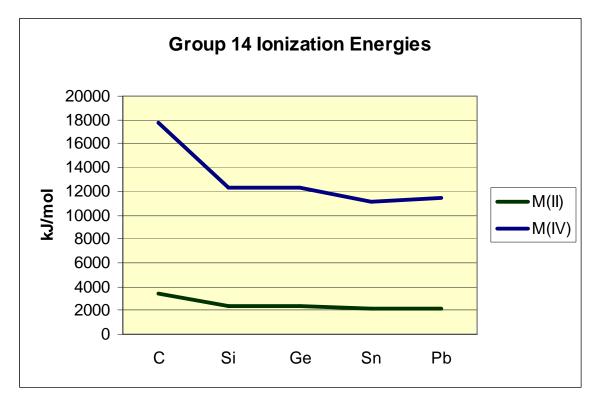
- One of the longest known elements
- Symbol Sn from Latin *stannum*
- Bronze items from ca. 3500 B.C.E. contain 10-15% Sn alloyed with Cu.
- Cassiterite, mineral SnO₂, found in Britain, was an early source.
- Malaysia, Russia, and Bolivia are current principal sources.
- About 40% of tin used in plating to provide a non-toxic coating for sheet metal and "tin" cans.
- Important component of many alloys.

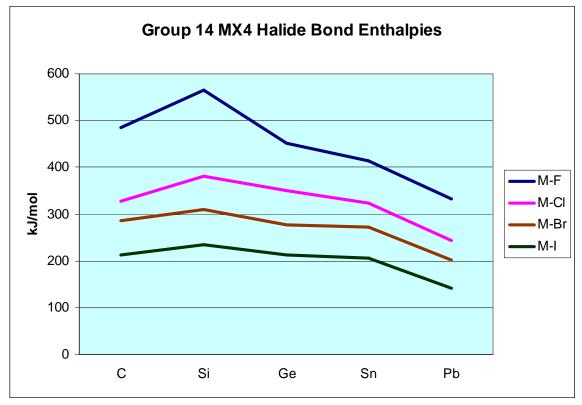
Solder	50% Sn, 50% Pb
Aluminum solder	86% Sn, 9% Zn, 5% Al
Pewter	85% Sn, 6.8% Cu, 6% Bi, 1.7% Sb
Bronze	80% Cu, 15% Sn, 5% Zn
Bell metal	78% Cu, 22% Sn
Babbitt	90% Sn, 7% Sb, 3% Cu

• Tin has more stable isotopes than any other element.

Tin Chemistry

- Tin is stable toward water and oxygen at 25 °C, but reacts with steam or when heated in oxygen to give SnO₂. $Sn(s) + 2H_2O(g) \rightarrow SnO_2(s) + 2H_2(g)$ $Sn(s) + O_2(g) \rightarrow SnO_2(s)$
- Tin shows little reaction with dilute HCl or H₂SO₄, but with dilute HNO₃ it forms Sn(NO₃)₂ and NH₄NO₃.
- Hot conc. HCl gives SnCl₂ and H₂, and hot conc. H₂SO₄ gives SnSO₄ and SO₂.
- In hot KOH(*aq*), Sn dissolves to give $K_2[Sn(OH)_6]$ and H_2 .
- Note that both +2 and +4 Sn compounds form, showing that both states have comparable stability.
- Which oxidation state forms depends upon the thermodynamics of ionization versus bond stability.


State Trends in Group 14


• All group 14 elements have the valence configuration ns^2np^2 .

$$\mathbf{M}(ns^2np^2) \to \mathbf{M}^{2+}(ns^2np^0) \to \mathbf{M}^{4+}(ns^0np^0)$$

- Stable carbon and silicon compounds have the group 14 element in the +4 state.
- Going down the group, the +4 state becomes less stable and the +2 state becomes more stable.
 - The increasing stability of the lower state (+2) has been called the "inert pair effect" for the tendency of the ns^2 configuration to be retained.
 - This has nothing to do with inherent "inertness" of the ns^2 configuration, but rather thermodynamics.
- A similar "inert pair" effect is found in groups 13, 14, 15.

Ionization Energies and Bond Enthalpies

Explanation of Inert Pair Effect

- Although energy "cost" of forming M(IV) is high for the lighter elements, the "pay-back" of bond formation is high, too.
- Ionization energy drops dramatically after C, declining slowly through the rest of the group.
- Bond strengths peak at Si, slowly decline through Sn, and then drop off significantly at Pb.
- At Ge and Sn, both M(II) and M(IV) states are stable.
- At Pb, the bond strength is too low to compensate for the slightly higher ionization energy requirement of the Pb(IV) state in many cases. Hence, the +2 state is favored.
- In all these compounds, the oxidation state is merely a formalism, because all are molecular (not ionic) compounds.

Group 14 Tetrahalides

- All are known, except PbI₄, whose Pb-I bonds are too weak to support the higher oxidation state.
- Although C–X bonds are strong, CI₄ has significant steric crowding and decomposes on heating or in u.v. light to C₂I₄, whose I–C–I angle of 114.2° reduces the strain. 2CI₄ → I₂C=CI₂ + 2I₂
- Except for SnF₄ and PbF₄, all are very volatile, suggesting covalent bonding with weak van der Waals forces between molecules.
- SnX₄ compounds can act as Lewis acids in the presence of excess halide ion.

 $SnX_4 + 2X^- \rightarrow SnX_6^{2-}$

- Lewis acid strength is in the order $SnF_4 > SnCl_4 > SnBr_4 > SnI_4$.
- SnI_4 can also undergo redox with I⁻ to give SnI_2 .

$$\operatorname{SnI}_4 + \mathrm{I}^- \rightarrow \operatorname{SnI}_2 + \mathrm{I}_3^-$$

The resulting solution is brown in polar solvents.

- Except for CX₄, all hydrolyze in water to give various hydrated oxides, although it is possible to isolate a few hydrates of Sn(IV).
- SnX_4 compounds hydrolyze to give hydrated SnO_2 and HX. $SnX_4 + 2H_2O \rightarrow SnO_2 + 4HX$
 - Similar reaction occurs with alcohols.

Synthesis of SnI₄

• Direct reaction of tin metal with iodine in methylene chloride yields SnI₄ as the principal product, with formation of SnI₂ as a side reaction.

$$\begin{array}{l} Sn+2I_2 \rightarrow SnI_4 \\ Sn+I_2 \rightarrow SnI_2 \end{array}$$

- SnI_4 is a red-orange solid; SnI_2 is a yellow-red solid.
 - Color due to polarizability of I⁻, probably involving charge transfer (I→Sn).
- SnI_2 is polar, and SnI_4 is non-polar.
 - As a result, SnI_2 is slightly more soluble in CH_2Cl_2 .
- SnI₂ is somewhat more ionic and has a higher m.p.

 SnI_2 m.p. ≈ 330 °C SnI_4 m.p. = 143-144 °C