
Magnetic Moment

- In this experiment you will determine the magnetic susceptibility of one of the compounds you previously synthesized; e.g., [Cr(NH₃)₆](NO₃)₃, Mn(acac)₃.
- From the corrected molar susceptibility you will calculate the magnetic moment of the compound, μ , which you will compare with the ideal spin-only moment for the compound.
- From $\mu_s = \sqrt{n(n+2)}$ B.M., the expected values of μ_s for transition-metal complexes with n = 1-5 unpaired electrons are as follows.

n	S	μ_{s} (B.M.)
1	1/2	1.73
2	1	2.83
3	3/2	3.87
4	2	4.90
5	5/2	5.92

Magnetic Susceptibility with an Evans Balance

• This experiment uses a modified form of the Guoy balance method, using a microscale apparatus devised by D. F. Evans and manufactured by Johnson-Matthey.

- A moveable magnet attached to a torsion balance detects the force created by diamagnetic and paramagnetic moments in the sample.
 - ▼ Diamagnetic moment makes the magnet move down.
 - A Paramagnetic moment makes the magnet move up.

Evans Balance Susceptibility Calculation

• The gram susceptibility of the sample is given by

$$\chi_g = \frac{L}{m} \Big[C(R - R_o) + \chi'_v A \Big]$$

where $\chi_g = mass magnetic susceptibility$

- L = sample length in centimeters
- m = sample mass in grams
- C = balance calibration constant
- R = reading from the digital display when the sample (in the sample tube) is in place in the balance
- R_o = reading from the digital display when the empty sample tube is in place in the balance
- $\chi_{\nu}' =$ volume susceptibility of air (0.029 x 10⁻⁶ erg·G⁻²cm⁻³)

A = cross-sectional area of the sample

• The volume susceptibility of air can be ignored with solid samples, so the equation becomes

$$\chi_g = \frac{CL(R - R_o)}{m \times 10^9}$$

• In this experiment you will determine the value of *C* by taking readings on a sample of $[Ni(en)_3]S_2O_3$, for which $\chi_g = 1.104 \times 10^{-5} \text{ erg} \cdot \text{G}^{-2} \cdot \text{cm}^{-3}$.

Calculating Magnetic Moment, µ

• The *molar magnetic susceptibility*, χ_M , is obtained from the mass magnetic susceptibility by multiplying by the molecular weight of the sample in units of g/mol; i.e.,

$$\chi_M = M \chi_g$$

- Units of χ_M are erg $\cdot G^{-2}$.
- Diamagnetic corrections need to be applied to this measured molar magnetic susceptibility.
 - The diamagnetic contributions arise from core paired electrons, ligand electron pairs, and counter ion electron pairs.

 $\chi_A = \chi_M - \{\chi_M(\text{core}) + \chi_M(\text{ligand}) + \chi_M(\text{ion})\}$

- The diamagnetic correction factors are tabulated values, called Pascal's constants.
- Use the newly published values of G. A. Bain and J. F. Berry, *J. Chem. Educ.*, 2008, 85, 532.
- We will assume that paramagnetic coupling is minimal (θ = 0), so the simpler Curie Law equation applies:

$$\mu = 2.828 \sqrt{\chi_A T}$$

 Do not forget to take the temperature at the time of the measurements to use in this calculation.

Making the Measurements Obtaining the Instrument Constant, *C*

- (1) Determine R_{0} .
 - Zero the balance.
 - Weigh a clean, dry, empty sample tube on an analytical balance.
 - Place the tube in the Evans balance and read R_0 .
 - The needle on the scale should drift no more than ± 1 .
- ② Fill the tube to at least 1.5 cm with $[Ni(en)_3]S_2O_3$.
 - Gently tap the sample on a hard surface (away from the balance) to pack it well.
 - Measure the length of the sample in the tube in centimeters to obtain the value of *L*.
 - Obtain the mass of the tube and sample on the same analytical balance you previously used.
 - Rezero the balance, insert the sample, and take a reading to obtain *R*.
 - If a reading is off-scale, change to the X10 range and multiply the reading by 10.
- 3 Calculate the instrument constant, *C*, from your *L*, R_0 , *R*, *m* data and the value of the mass susceptibility of $[Ni(en)_3]S_2O_3$, $\chi_g = 1.104 \times 10^{-5} \text{ erg} \cdot \text{G}^{-2} \cdot \text{cm}^{-3}$, using

$$\chi_g = \frac{CL(R - R_o)}{m \times 10^9}$$

Making the Measurements Obtaining the Sample Data

- ① Empty the sample of $[Ni(en)_3]S_2O_3$. (If absolutely sure it has not been contaminated, you may put it back in the original sample bottle.)
 - Clean and dry the sample tube.
- 2 Redetermine R_0 .
 - Zero the balance.
 - Weigh the clean, dry, empty sample tube on an analytical balance.
 - Place the tube in the balance and read R_{0} .
 - The needle on the scale should drift no more than ± 1 .
- ③ Fill the tube to at least 1.5 cm with your sample; e.g., $[Cr(NH_3)_6](NO_3)_3$, $Mn(acac)_3$.
 - Gently tap the sample on a hard surface (away from the balance) to pack it well.
 - Measure the length of the sample in the tube in centimeters to obtain the value of *L*.
 - Obtain the mass of the tube and sample on the same analytical balance.
 - Rezero the balance, insert the sample, and take a reading to obtain *R*.
 - If a reading is off-scale, change to the X10 range and multiply the reading by 10.
- (4) Be sure to take the temperature near the balance to obtain T, needed for calculating μ by the Curie Law equation.

Calculating χ_g and μ for the Sample

• Calculate the mass susceptibility of your sample from *L*, *R*_o, *R*, *m* and the previously determined instrument constant, *C*, using

$$\chi_g = \frac{CL(R - R_o)}{m \times 10^9}$$

- Calculate the molar susceptibility by $\chi_M = M\chi_g$.
- Calculate the corrected molar susceptibility by subtracting the Pascal's constants:

 $\chi_A = \chi_M - \{\chi_M(\text{core}) + \chi_M(\text{ligand}) + \chi_M(\text{ion})\}$

Calculate μ from χ_A and the temperature in kelvin (K), using the Curie Law:

$$\mu = 2.828 \sqrt{\chi_A T}$$