Cu(II) vs. Cu(I)

- Cu(II) is the stable state of copper.
 - ★ Configuration $3d^9$ with one unpaired electron makes Cu(II) compounds paramagnetic.
 - ★ Incomplete 3d subshell permits d-d state-to-state electronic transitions, which causes color (typically blue or green).
- Cu(I) is an unstable state of copper.
 - ★ Configuration $3d^{10}$ with no unpaired electrons makes Cu(I) diamagnetic.
 - ★ Complete 3d subshell precludes d-d state-to-state transitions, so Cu(I) is colorless like isoelectonic Zn(II).
 - → Cu(I) compounds may be colored with certain anions

CuI(s) — pale yellow $Cu_2O(s)$ — brick red

★ Fehling's solution, an alkaline solution of Cu^{2+} with sodium tartrate, reacts with reducing sugars such as glucose to give brick red Cu_2O .

Oxidation of Cu(I)

• In aqueous solution, Cu(I) is readily oxidized to Cu(II) in the presence of oxygen:

 $4(\mathrm{Cu}^+ \rightleftharpoons \mathrm{Cu}^{2+} + e^{-}) \qquad -E^{\mathrm{o}} = -0.153 \mathrm{V}$ $\mathrm{O}_2 + 4\mathrm{H}^+ + 4 e^{-} \rightleftharpoons 2\mathrm{H}_2\mathrm{O} \qquad E^{\mathrm{o}} = +1.229 \mathrm{V}$

 $4\mathrm{Cu}^{+} + \mathrm{O}_{2} + 4\mathrm{H}^{+} \rightleftharpoons 4\mathrm{Cu}^{2+} + 2\mathrm{H}_{2}\mathrm{O} \ E^{\mathrm{o}}_{\mathrm{cell}} = 1.076 \mathrm{V}$

• Cu(I) undergoes spontaneous disproportionation (autoredox):

Cu^+		$Cu^{2+} + e^{-}$	$-E^{\circ} = -0.153 \text{ V}$
$Cu^+ + e^-$		Cu	$E^{\circ} = +0.521 \text{ V}$
$2 \ Cu^+$	\Rightarrow	$Cu + Cu^{2+}$	$E^{\rm o}_{\rm cell} = +0.368 {\rm V}$

★ Thus ΔG is negative (spontaneous) for disproportionation.

Stabilizing Cu(I) in Compounds

- Simple Cu(I) compounds that can exist in the presence of water are those with low-charge anions, such CuCl, CuBr, CuI, and CuCN, whose compounds are *insoluble* in water.
- In the solid, stability depends on the neighboring anion and the resulting lattice energy of the ionic solid.
- Copper(I) chloride is made by boiling a solution of HCl(aq) and $CuCl_2(aq)$ in the presence of excess Cu.
- Synthesis takes advantage of the stability of solid CuCl, which makes redox between Cu^o and Cu²⁺ spontaneous:

 $\operatorname{Cu}(s) + \operatorname{Cu}^{2+}(aq) + 2 \operatorname{Cl}^{-}(aq) \rightleftharpoons 2 \operatorname{Cu}\operatorname{Cl}(s) \qquad E^{\circ}_{\text{cell}} = +0.442 \text{ V}$

Stabilizing Cu(I) in Aqueous Chloride Solution

- In aqueous solution only small concentrations of Cu(I) can exist, $[Cu^+] < 10^{-2}$ M.
- Relative stability of Cu(I) in aqueous solution is strongly dependent on the nature of the anion or the presence of complexing ligands.
- In concentrated HCl solution, the initial product is the dichlorocuprate ion, [CuCl₂]⁻, in solution:

 $\operatorname{Cu}(s) + \operatorname{Cu}^{2+}(aq) + 4 \operatorname{Cl}^{-}(aq) \rightleftharpoons 2 [\operatorname{Cu}\operatorname{Cl}_2]^{-}(aq)$

• On dilution with water, copper(I) chloride precipitates:

 $[\operatorname{CuCl}_2]^{-}(aq) \rightleftharpoons \operatorname{CuCl}(s) + \operatorname{Cl}^{-}(aq)$

- Dilution reduces [Cl⁻], which drives the equilibrium to the right.
- Conversely, if CuCl(s) is added to a chloride solution, it will dissolve due to the driving force of forming the [CuCl₂]⁻(aq) complex.

Stability of Cu⁺ vs. Cu²⁺ Complexes

- Position of the $2Cu^+ \Rightarrow Cu^{2+} + Cu^0$ equilibrium in the presence of complexing ligands depends on the relative stability of the Cu⁺ complex relative to the Cu²⁺ complex.
- Anions or bridging ligands that form complexes with Cu⁺ may stabilize Cu⁺ so long as they do not form more stable complexes with Cu²⁺.
- In the synthesis, formation of $[CuCl_2]^-(aq)$ effectively removes Cu⁺ from the solution, thereby driving the equilibrium to the left (LeChatelier's Principle).
- When CuCl(*s*) is treated with the chelating ligand ethylenediamine Cu⁺ is oxidized to Cu²⁺, because the bis-ethylenediamine copper(II) complex is more stable than the copper(I) complex:

 $2 \operatorname{CuCl}(s) + 2 \operatorname{en} \rightleftharpoons [\operatorname{Cu}(\operatorname{en})_2]^{2+}(aq) + \operatorname{Cu}(s) + 2 \operatorname{Cl}^{-}(aq)$

• With non-chelating ligands such as NH_3 and pentamethylenediamine $[H_2N-(CH_2)_5-NH_2]$ the copper(I) complex is favored.

 $[\operatorname{Cu}(\operatorname{NH}_3)_4]^{2+}(aq) + \operatorname{Cu}(s) \rightleftharpoons 2 [\operatorname{Cu}(\operatorname{NH}_3)_2]^{+}(aq)$

Copper(I) Iodide

• Copper(I) iodide precipitates when any Cu(II) salt is added to a KI(*aq*) solution.

$$2\mathrm{Cu}^{2+}(aq) + 4\mathrm{I}^{-}(aq) \rightleftharpoons 2\mathrm{CuI}(s) + \mathrm{I}_{2}$$

• $I^{-}(aq)$ is a strong enough reducing agent to reduce $Cu^{2+}(aq)$ to CuI(s).

$2I^{-} \rightleftharpoons I_{2} + 2e^{-}$	$-E^{\circ} = -0.54 \text{ V}$
$2(\mathrm{Cu}^{2+} + \mathrm{I}^{-} + e^{-} \rightleftharpoons \mathrm{CuI})$	$E^{\rm o} = +0.88 \ { m V}$

$$2Cu^{2+} + 4I^{-} \Rightarrow 2CuI + I_2 \qquad E^{\circ}_{cell} = +0.34 \text{ V}$$

Cu⁺ in Acetonitrile

- CuCl is soluble in actonitrile, CH_3CN .
 - ★ Cu(I) is effectively solvated by CH_3CN .
 - ★ Cu(I) is actually more stable than Cu(II) in acetonitrile.
 - ★ Tetrahedral ion $[Cu(CH_3CN)_4]^+$ can be isolated in salts with large anions such as ClO_4^- and PF_6^- .