Mn(acac)₃ Synthesis

• Manganese (Z = 25) has a valence configuration $3d^54s^2$, and typically shows positive oxidations states of +2, +3, and +7, all of which are seen in this experiment.

$MnCl_2 \cdot 4H_2O$	Mn(II)	pale pink
$Mn(acac)_3$	Mn(III)	lustrous dark brown
KMnO ₄	Mn(VII)	deep purple

- Pale color of MnCl₂·4H₂O is due to the absence of any same-spin (spin-allowed) *d-d* transitions for a *d*⁵ high-spin complex.
- Mn(acac)₃ is green by transmitted light, owing to a single broad *d*-*d* transition at about 500 nm.
- KMnO₄ is deep purple, owing to a charge transfer transition with high molar absorptivity.
- The ligand (acac) in the product is the anion of acetylacetone, 2,4-pentanedione, CH₃COCH₂COCH₃, Hacac.
- Mn(acac)₃ has octahedrally coordinated Mn³⁺ ($D_3 \approx O_h$).

d-Subshell Splitting in an Octahedral Field

- In the octahedral environment of three acac ligands, the five-fold degeneracy among *d* orbitals in Mn³⁺ is lifted.
 - To a first approximation, the ligand field is octahedral (O_h) , and the 3*d* orbitals will separate into a set of three degenerate orbitals $(t_{2g.} = d_{xy}, d_{yz}, d_{xz})$ and a set of two degenerate orbitals $(e_g = d_{x^2-y^2}, d_{z^2})$.
 - The t_{2g} orbitals point between ligands, but the e_g orbitals point at ligands, so the t_{2g} set is stabilized and the e_g is destabilized relative to the energy of a hypothetical spherical octahedral field.

 $d_{2z^2-x^2-y^2} = d_{z^2}$

d-Subshell Splitting in an Octahedral Field - cont.

Relative to the energy of the hypothetical spherical field, the e_g set will rise in energy and the t_{2g} set will fall in energy, creating an energy separation of Δ_o or 10Dq between the two sets of d orbitals.

- The energy increase of the e_g orbitals and the energy decrease of the t_{2g} orbitals must be balanced relative to the energy of the hypothetical spherical field (sometimes called the barycenter).
 - The energy of each of the two orbitals of the e_g set rises by $+3/5\Delta_0 = +6Dq$ while the energy of each of the three t_{2g} orbitals falls by $-2/5\Delta_0 = -4Dq$. This results in no net energy change for the system; i.e.,

$$\Delta E = E(e_g) + E(t_{2g}) = (2)(+3/5\Delta_o) + (3)(-2/5\Delta_o)$$

= (2)(+6Dq) + (3)(-4Dq)
= 0

• The magnitude of Δ_0 depends upon both the metal ion and the attaching ligands.

High-Spin and Low-Spin Configurations

- In an octahedral complex, electrons fill the t_{2g} and e_g orbitals in an aufbau manner, but for configurations $d^4 - d^7$ there are two possible filling schemes depending on the magnitude of Δ_0 relative to the mean pairing energy, *P*.
 - A high spin configuration avoids pairing by spreading the electrons across both the t_{2g} and e_g levels.
 - A low spin configuration avoids occupying the higher energy e_g level by pairing electrons in the t_{2g} level.
- For a given metal ion, the pairing energy is relatively constant, so the spin state depends upon the magnitude of the field strength, Δ_0 .
 - Low field strength results in a *high-spin* state.
 - High field strength results in a *low-spin* state.
- For a d^4 configuration, the high-spin state is $t_{2g}^3 e_g^1$, and the low-spin state is $t_{2g}^4 e_g^0$.

• Mn(acac)₃ is a weak-field/high-spin case $(t_{2g}^{3}e_{g}^{1})$.

State Splitting in an Octahedral Field

- In the absence of the octahedral field (point group R_3), the ground state of a $3d^4$ configuration is ⁵D.
 - A weak O_h field causes this to split into two states:

 - Ground state ${}^{5}E_{g} = t_{2g}{}^{3}e_{g}{}^{1}$ Excited state ${}^{5}T_{2g} = t_{2g}{}^{2}e_{g}{}^{2}$

• The ${}^{5}E_{g}$ ground state is doubly-degenerate, because there are two ways of placing the e_{o}^{1} electron:

$(t_{2g})^{\tilde{3}}$	(d_{x^2})	$(d_{z^2})^1 (d_{z^2})^0$	
$(t_{2g})^3$	(d_{x^2})	$(d_{z^2})^0 (d_{z^2})^1$	

• The ${}^{5}T_{2g}$ excited state is triply degenerate, because there are three ways of placing the vacant orbital:

$$(d_{xy})^{1} (d_{yz})^{1} (d_{xz})^{0} (e_{g})^{2} (d_{xy})^{1} (d_{yz})^{0} (d_{xz})^{1} (e_{g})^{2} (d_{xy})^{0} (d_{yz})^{1} (d_{xz})^{1} (e_{g})^{2}$$

• ${}^{5}E_{g}$ state is paramagnet from four unpaired electrons.

Absorption Spectra and State-to-State Transitions

- When a transition metal complex absorbs visible light, the energy absorbed (*h v*) causes a transition from the ground state to an excited state, corresponding to a change in electronic configuration.
- For a high-spin d^4 complex like Mn(acac)₃, only one samespin state-to-state transition is possible: ${}^5E_g \rightarrow {}^5T_{2g}$.

- The energy of this transition occurs at ~500 nm, removing red-orange light and transmitting green light.
- The ${}^{5}E_{g} \rightarrow {}^{5}T_{2g}$ gives rise to a single absorption band in the visible spectrum at ~500 nm.

Jahn-Teller Distortion

- Jahn-Teller Theorem: For any nonlinear system in a degenerate state, a distortion will occur that will lift the degeneracy.
- Mn(acac)₃ has a ${}^{5}E_{g}$ ground state, which has an imbalance in the filling of electrons in orbitals that point directly at ligands.
 - $(t_{2g})^3 (d_{x^2-y^2})^1 (d_{z^2})^0$ or $(t_{2g})^3 (d_{x^2-y^2})^0 (d_{z^2})^1$
 - This results in significant distortion from ideal octahedral symmetry (O_h).
- Jahn-Teller Corollary: If the system is centrosymmetric, the distorted configuration will also be centrosymmetric.
- For Mn(acac)₃ this suggests tetragonal distortion, $O_h \rightarrow D_{4h}$.
 - Most probable distortions are equally elongating or shortening two *trans*-related positions, relative to the four remaining equal positions in a plane.
- $Mn(acac)_3$ exists in two tetragonally distorted forms.

Synthetic Procedure

• Two-step preparation:

 $\begin{aligned} \operatorname{MnCl}_2(aq) + 2\operatorname{Hacac}(aq) + 2\operatorname{NaC}_2\operatorname{H}_3\operatorname{O}_2(aq) \rightarrow \\ \operatorname{Mn}(\operatorname{acac})_2(aq) + 2\operatorname{NaCl}(aq) + 2\operatorname{HC}_2\operatorname{H}_3\operatorname{O}_2(aq) \end{aligned}$

 $4\text{Mn}(\text{acac})_2 + \text{KMnO}_4(aq) + 7\text{Hacac}(aq) + \text{HC}_2\text{H}_3\text{O}_2(aq) \rightarrow 5\text{Mn}(\text{acac})_3(s) + \text{KC}_2\text{H}_3\text{O}_2(aq) + 4\text{H}_2\text{O}(l)$

- Crude product is obtained by chilling the final mixture.
- Pure product is obtained by recrystallization from benzene solution on adding petroleum ether.
- Procedure notes:
 - (1) Make certain that all $KMnO_4$ is dissolved before adding to the solution in the second step.
 - (2) Use filter paper /Büchner funnel or Hirsh funnel for first crude product collection (not sintered glass).
 - (3) Filter benzene solution through a sintered glass filter that is already discolored brown.
 - (4) Discard all solutions (esp., benzene/petroleum ether mixture) in waste containers (nothing down the drain).