Chem 370 - Spring, 2019 **Assignment 9 - Solutions**

- 11.11 a. $d^{8}(O_{h})$ is $t_{2g}^{6}e_{g}^{2}$. There is only one configuration for this, so it is ${}^{3}A_{2g}$, as the Tanabe-Sugano or Orgel diagram shows.
 - b. d^5 high spin is $t_{2g}^{3}e_{g}^{2}$, for which there is only one configuration, so it is ${}^{6}A_{1g}$. d^5 low spin is $t_{2g}^{5}e_g^{0}$. The unpaired electron can be in any of the three t_{2g} orbitals, making this a triply degenerate T terms. This is ${}^{2}T_{2g}$.
 - c. $d^4(T_d)$ is $e^2 t_2^2$. Recall that all T_d ML₄ complexes are high spin. Here, the hole can be in any one of the three t_2 orbitals, so this is a triply degenerate state. The $d^4 T_d$ Orgel diagram is the same as the d^1 , $d^6 O_h$ diagram, so this is a 5T_2 state (no subscript g).
 - d. d^9 square planar (D_{4h}) . The highest orbital, b_{1g} $(d_{x^2-y^2})$, has one electron in it, so this is a non-degenerate state. In D_{4h} this would be ${}^{2}B_{1e}$.
- 11.13 $[Ni(H_2O)_6]^{2+}$ is $d^8 O_h$. This case is covered by the left side of the second Orgel diagram, the diagram for d^2 , $d^7 O_h$ and related cases. For $d^8 O_h$, the lowest energy transition, ${}^3A_{2g}$ \rightarrow ${}^{3}T_{2g}$, is equivalent to Δ_{0} , so from Figure 11-8 for $[Ni(H_2O)_6]^{2+}\Delta_0$ is ~8,700 cm⁻¹. The other two bands arise from the transitions ${}^{3}A_{2g} \rightarrow {}^{3}T_{1g}(F)$ and ${}^{3}A_{2g} \rightarrow {}^{3}T_{1g}(P)$. The splitting of the bands is a result of Jahn-Teller distortion of the triply degenerate excited states in each case. Note that the ground state $({}^{3}A_{1g})$ is immune from Jahn-Teller distortion.
- 11.14 a. $[Cr(C_2O_4)_3]^{3-}$ has $Cr^{3+} d^3$. Either from the Orgel diagram or the Tanabe-Sugano diagram, we expect the following transitions: $v_1 [{}^4A_{2g} \rightarrow {}^4T_{2g}], v_2 [{}^4A_{2g} \rightarrow {}^4T_{1g}(F)], v_3 = v_1 [{}^4A_{2g} \rightarrow {}^4T_{1g}(F)], v_4 = v_2 [{}^4A_{2g} \rightarrow {}^4T_{1g}(F)], v_5 = v_2 [{}$ $[{}^{4}A_{2g} \rightarrow {}^{4}T_{1g}(P)]$. In $d^{3}O_{h}$ cases, Δ_{o} corresponds to the energy of the first transition, v_1 . For this complex, $v_1 = 17,400 \text{ cm}^{-1} = \Delta_0$.
 - b. $[\text{Ti}(\text{NCS})_6]^{3-}$ has $\text{Ti}^{3+} d^{1}$. The single band arises from the transition ${}^2T_{2g} \rightarrow {}^2E_g$, as predicted from the right side of the first Orgel diagram. Thus, $\Delta_0 = 18,400 \text{ cm}^{-1}$. Both the ground state and the excited state are subject to Jahn-Teller distortions, but only the ${}^{2}E_{g}$ state will have appreciable splitting, because it arises from an imbalance in e_g orbitals directed at ligands. This is the probable cause of the band splitting.
 - c. $[Ni(en)_3]^{2+}$ has Ni²⁺ d^8 . The Orgel diagram for d^8 is the same as d^3 (see above), so we expect three bands: $v_1 [{}^{3}A_{2g} \rightarrow {}^{3}T_{2g}], v_2 [{}^{3}A_{2g} \rightarrow {}^{3}T_{1g}(F)], v_3 [{}^{3}A_{2g} \rightarrow {}^{3}T_{1g}(P)]$. As with the $d^{3} O_h$ case, for $d^{8} O_h \Delta_0$ is the energy of the first band, here $v_1 = 11,200 \text{ cm}^{-1} = \Delta_0$.
- 11.16 a. $t_{2g}^{4}e_{g}^{2} T$ The pair in t_{2g} orbitals can be in any of the three. b. $t_{2g}^{6} A$ There is only one way of assigning the electrons. c. $t_{2g}^{3}e_{g}^{3} E$ An excited state; the pair in e_{g} (or the unpaired electron) can be in either orbital.
 - d. $t_{2g}^{5} T$ The unpaired electron can be in any of the three t_{2g} orbitals.

e. $e_g^{-1} - E$ An excited state; the electron can be in either orbital.

11.17 Configurations corresponding to nondegenerate states will not have distortions. Those that are e_g^1 and e_g^3 , which lead to *E* states, will have large distortions, because e_g orbitals are directed at ligands. Configurations that correspond to triply degenerate states arise from an imbalance among t_{2g} orbitals, which lie between ligands. These have only small distortions.

d^n	$t_{2g}^{x}e_{g}^{y}$	State	Distortion	$t_{2g}^{x}e_{g}^{y}$	State	Distortion
1	t_{2g}^{1}	${}^{2}T_{2g}$	small			
2	t_{2g}^{2}	${}^{3}T_{2g}$	small			
3	t_{2g}^{3}	${}^{4}\!A_{2g}$	none			
4	$t_{2g}^{3}e_{g}^{1}$	${}^{5}E_{g}$	large	t_{2g}^{4}	${}^{3}T_{1g}$	small
5	$t_{2g}^{3}e_{g}^{2}$	${}^{6}\!A_{1g}$	none	t_{2g}^{5}	${}^{2}T_{2g}$	small
6	$t_{2g}^{4}e_{g}^{2}$	${}^{5}T_{2g}$	small	t_{2g}^{6}	${}^{1}\!A_{1g}$	none
7	$t_{2g}{}^{5}e_{g}{}^{2}$	${}^{4}T_{1g}$	small	$t_{2g}^{6}e_{g}^{1}$	$^{2}E_{g}$	large
8	$t_{2g}^{6}e_{g}^{2}$	${}^{3}A_{2g}$	none			
9	$t_{2g}^{6}e_{g}^{3}$	${}^{2}E_{g}$	large			

- 11.23 a. At 80 K, $\mu_s = 0.65 = \sqrt{n(n + 2)}$, from which $n = 0.19 \approx 0$. At 300 K, $\mu_s = 5.2 = \sqrt{n(n + 2)}$, from which $n = 4.3 \approx 4$.
 - b. The complex appears to be d^6 low-spin at 80K and d^6 high spin at 300 K. Looking at the Tanabe-Sugano diagram, we would expect as many as five bands arising from the ${}^{1}A_{1g}$ ground state of the low-spin complex at 80 K. More realistically, there are probably only two or three bands, because the upper ${}^{1}E_{g}$ and ${}^{1}T_{2g}$ states are nearly degenerate, and the transition to the highest state $({}^{1}A_{2g})$ probably falls in the uv. The transition to the accidentally degenerate ${}^{1}E_{g}$ and ${}^{1}T_{2g}$ states may also fall in the uv. By contrast, the d^6 high-spin complex should have only one band, ${}^{5}T_{2g} \rightarrow {}^{5}E_{g}$. This band may show some spitting, owing to strong Jahn-Teller distortion in the excited state.

11.27 Adding NH_3 causes replacement of the H_2O ligands, and adding ethylendiamine (*en*) causes replacement of NH_3 ligands with *en*.

	$[Ni(H_2O)_6]^{2+}$	NH ₃ ►	$[Ni(NH_3)_6]^{2+}$	en >	$[Ni(en)_3]^{24}$
Color:	green		blue		violet
Complement:	red		orange		yellow

In the spectrochemical series, H₂O is weaker than NH₃, which is weaker than *en*. Thus, through the series of substitutions, the value of Δ_0 increases. Treating all of these as octahedral (the *en* complex is actually D_3), from the d^8 Orgel diagram we predict three absorption bands, arising from the transitions ${}^{3}A_{2g} \rightarrow {}^{3}T_{2g}$, ${}^{3}A_{2g} \rightarrow {}^{3}T_{1g}(F)$, ${}^{3}A_{2g} \rightarrow {}^{3}T_{1g}(P)$. As Δ_0 increases, the frequencies of all of these transitions increase, which means the absorbed region of the visible spectrum shifts toward the blue end of the visible spectrum. The absorbed regions are the complements of the colors we perceive. These complements change from red to orange to yellow, a shift toward higher frequencies, consistent with increasing Δ_0 .

- 12.1 Cr^{2+} is a d^4 configuration, and with H₂O ligands it is high spin, with one electron in the e_g^* level. Moreover, its ground state term is 5E_g , which is subject to significant Jahn-Teller distortion. Therefore, $[Cr(H_2O)_6]^{2+}$ is labile, making substitution very favorable. With CN^- ligands, Cr^{2+} is low spin, with a ${}^3T_{1g}$ term and less significant Jahn-Teller distortion. Also, CN^- forms strong bonds with Cr^{2+} . All these factors make $[Cr(CN)_6]^{4-}$ inert.
- 12.2 The rate law expressions for I_a and I_d are too similar (often first order) to form a basis for distinguishing between them. However, if the rate constants for different entering ligands are quite different, that suggests that the formation of an associative complex (effectively increasing the coordination number) is a rate determining step, and the mechanism is I_a . If dissociation is more important, then the rates with different leaving groups should be quite different, and the mechanism is I_a .
- 12.4 $[Fe(CN)_6]^{4-}$ is a low-spin d^6 configuration $({}^{1}A_{1g})$, with the maximum CFSE of $-2.4\Delta_0$ (ignoring the 3*P* pairing energy). The low-spin, strong Fe-CN bonds, and absence of Jahn-Teller distortion make this a stable and inert complex. Thus, there is no danger of dissociation of toxic CN⁻.
- 12.16 a. $[Pt(CO)Cl_3]^- + NH_3 \rightarrow trans [Pt(CO)(NH_3)Cl_2]$ CO is the stronger trans director.
 - b. $[Pt(NH_3)Br_3]^- + NH_3 \rightarrow cis [Pt(NH_3)_2Br_2]$ Br is the stronger *trans* director.

c.
$$[Pt(C_2H_4)Cl_3]^- + NH_3 \rightarrow trans-[Pt(C_2H_4)(NH_3)Cl_2]$$

 C_2H_4 is the stronger *trans* director.

12.20 Neither H₂O nor NH₃ is a potential bridging ligand, so the mechanism cannot be inner sphere. Therefore, it is outer sphere.

- 8.1 a. H_2 74.2 pm 436 kJ/mol H_2^+ 106 pm 255 kJ/mol These data are consistent with the MO descriptions σ^2 for H_2 and σ^1 for H_2^+ , corresponding to bond orders of 1 and $\frac{1}{2}$, respectively.
 - b. As shown in problem 5.20, the D_{3h} structure of H_3^+ has an MO scheme consisting of three MOs, a_1' and e'. The two electrons of H_3^+ occupy the a_1' MO, resulting in a 3*c*-2*e* bond for the molecule.
- 8.2 He_2^+ has two electrons in the bonding σ MO and one in the antibonding σ^* MO, resulting in a bond order of ¹/₂. HeH⁺ has two electrons in the bonding σ MO, resulting in a bond order of 1, but the energies of the 1*s* are very mismatched. The electron pair in the bonding MO is localized more on the He.

- 8.3 Being isoelectronic with IF_4^- and XeF_4 , CsF_4^+ would presumably have a square planar structure with two *trans* lone pairs (VSEPR type AX_4E_2). However, in CsF_4^+ the cesium would be in the previously unknown oxidation state of +5. This would be such a potent oxidizing agent that it would likely have an instantaneous redox with fluoride to yield F_2 and CsF. It is unlikely that this species will ever be synthesized, let alone isolated.
- 8.5 As we have seen in numerous previous examples, the SALCs in $D_{\infty h}$ that could be formed from two p_z orbitals on separate F atoms would have Σ_g^+ and Σ_u^+ symmetry. On the central Be atom, the 2s orbital has Σ_g^+ symmetry and the $2p_z$ orbital has Σ_u^+ symmetry. The p_x and p_y orbitals are degenerate as Π_u and are nonbonding. The resulting MO scheme, omitting the nonbonding Π_u level, is shown below.

8.9 The combination of orbitals in $Al_2(CH_3)_6$ is similar to diborane, B_2H_6 , except that the CH_3 group can be considered to contribute an sp^3 hybrid orbital (rather than a 1s orbital) to overlap with an sp^3 hybrid orbital from each Al, resulting an a 3c-2e bond for each bridge.

a. NaH + CH₃OH \rightarrow NaOCH₃ + H₂

b.
$$\operatorname{Ca_{3}P_{2} + 6H_{2}O} \rightarrow 3\operatorname{Ca(OH)_{2} + 2PH_{3}}$$

c. $2\operatorname{Na} + 2\operatorname{NH_{3}}(l) \xrightarrow{\operatorname{Fe^{3+}}} 2\operatorname{NaNH_{2} + H_{2}}$

- d. $2\text{LiNH}_2 \xrightarrow{\Delta} \text{Li}_2\text{NH} + \text{NH}_3$
- e. $Ca(OH)_2(aq) + CO_2(g) \rightarrow CaCO_3(s) + H_2O(l)$

f.
$$CaO + 3C \xrightarrow{\Delta} CaC_2 + CO$$

g.
$$2NaBH_4 + I_2 \xrightarrow{\text{diglyme}} B_2H_6 + 2NaI + H_2$$

h. $BCl_3 + 3H_2O \rightarrow B(OH)_3 + 3HCl$

2. a. The "water-gas shift reaction"

$$C + H_2O \xrightarrow{\Delta} CO + H_2$$
$$H_2 + CO + H_2O \xrightarrow{Fe} CO_2 + 2H_2$$

b. Cracking of methane to produce hydrogen

$$CH_4 + H_2O \xrightarrow[Ni]{800 °C} CO + 3H_2$$

c. Synthesis of LiAlH₄

In ether: $8LiH + Al_2Cl_6 \rightarrow 2LiAlH_4 + 6LiCl$

d. Mg burning in a CO_2 atmosphere

 $2Mg + CO_2 \rightarrow 2MgO + C$

e. slaking of lime

 $CaO + H_2O \rightarrow Ca(OH)_2$

f. setting of Plaster of Paris

 $2CaSO_4 \cdot \frac{1}{2}H_2O + 3H_2O \Rightarrow 2CaSO_4 \cdot 2H_2O$

g. cyanamide reaction

$$CaC_2 + N_2 \xrightarrow{1000^{\circ}C} CaCN_2 + C$$

h. Hall process

$$2Al_2O_3 \xrightarrow{1000 \circ C} 4Al + 3O_2$$

i. Goldschmidt or thermite reaction

$$Fe_2O_3 + 2Al \rightarrow Al_2O_3 + 2Fe$$

j. synthesis of B-trichloroborazine

$$3NH_4Cl + 3BCl_3 \xrightarrow{C_6H_5Cl} (BCl)_3(NH)_3 + 9HCl$$

- 3. Draw structures for the following molecules. Give the point group of the molecule, and note any peculiar bonding features (type of bridge bond, Lewis-base active lone pair, etc.)
 - a. borazine

b. solid LiCH₃

c. solid BeH₂

d. aluminum trichloride

e. boric acid

