Chem 370 - Spring, 2019 Assignment 3 ## **Reading Assignment** If you have not completed reading Chapter 4, do so now. That will be the cut-off point for the first test (currently scheduled for March 4th). Material in Chapter 5 will be covered on the second test. ## **Homework Assignment** Owing to the Presidents' Day holiday, Discussion 3 will be shifted to Friday, February 22nd, during what would normally be our regular lecture time. Complete the following exercises before coming to tht discussion. Do the following problems, which are adapted from my book, *Molecular Symmetry and Group Theory*. - 1. The operations of the group C_{2h} are E, C_2 , i, σ_h . - (a) Without consulting the C_{2h} character table, determine the sets of characters comprising the irreducible representations by which the unit vectors \mathbf{x} , \mathbf{y} , and \mathbf{z} transform in C_{2h} . - (b) Do the same for the rotational vectors \mathbf{R}_{x} , \mathbf{R}_{y} , and \mathbf{R}_{z} . - 2. Consider a general vector \mathbf{v} , whose base is at (0,0,0) and whose tip is at (x,y,z), in the point group C_{2h} . - (a) Derive the set of 3×3 transformation matrices that constitute the reducible representation, $\Gamma_{\rm m}$, by which v transforms. - (b) Reduce $\Gamma_{\rm m}$ into its component irreducible representations by block diagonalization. - (c) Write the reducible representation of characters, Γ_v , that corresponds to the matrix representation, Γ_m . - (d) Show that $\Gamma_{\rm v}$ reduces to the same irreducible representations as $\Gamma_{\rm m}$. - (e) Show that the four transformation matrices comprising $\Gamma_{\rm m}$ obey the same combinational relationships as the operations of C_{2h} . [*Hint*: You will need to work out the multiplication table for C_{2h} .] - 3. Consider the three *p* orbitals p_x , p_y , and p_z , which are degenerate for an isolated atom M. If M is surrounded by several X atoms, the electrostatic field they create may lift the degeneracy among the *p* orbitals. By consulting the appropriate character table (Appendix C in Miessler & Tarr), describe the degree of degeneracy among the *p* orbitals allowed by symmetry for each of the following structures: (a) MX₂, linear; (b) MX₂, bent; (c) MX₃, trigonal planar; (d) MX₃, pyramidal; (e) MX₃, T-shaped (as in ClF₃); (f) MX₄, tetrahedral; (g) MX₄, square planar; (h) MX₄, disphenoid (as in SF₄); (i) MX₅, square pyramidal; (j) MX₅, trigonal bipyramidal; (k) MX₆, octahedral. 4. Use the $C_{3\nu}$ multiplication table below. By taking all of the necessary similarity transforms verify that the three σ_{ν} planes belong to the same class. | C_{3v} | Е | C_3 | C_3^2 | σ_1 | σ_2 | σ_3 | |------------|-------------|------------|--|--------------|------------|------------------| | E | Ε | C_3 | C_3^2 E C_3 σ_3 σ_1 σ_2 | σ_{l} | σ_2 | σ_3 | | C_3 | C_3 | C_3^2 | E | σ_3 | σ_1 | σ_2 | | C_3^2 | $C_3^{\ 2}$ | E | C_3 | σ_2 | σ_3 | σ_1 | | σ_1 | σ_1 | σ_2 | σ_3 | E | C_3 | C_3^2 | | σ_2 | σ_2 | σ_3 | σ_1 | C_3^2 | E | C_3 | | σ_3 | σ_3 | σ_1 | σ_2 | C_3 | C_3^2 | \boldsymbol{E} | - 5. In $C_{3\nu}$ both C_3 and ${C_3}^2$ belong to the same class, listed as $2C_3$ in the character table. As members of the same class their characters for any representation are the same. - (a) Demonstrate that both C_3 and C_3^2 have a character of 1 for the A_1 representation, by which the unit vector **z** transforms. - (b) Demonstrate that both C_3 and C_3^2 have a character of -1 for the *E* representation, by which the unit vectors **x** and **y** transform degenerately. [*Hint*: Write the 2×2 transformation matrices describing the actions of the operations on a point (x,y) and determine their characters.] - 6. Describe the implied symmetry of the following irreducible representations on the basis of their Mulliken symbols: (a) A_{1g} in C_{2h} , (b) B_2 in C_{4v} , (c) E in D_3 , (d) A_1'' in D_{3h} , (e) E' in D_{3h} , (f) B_{1g} in D_{4h} , (g) E_u in D_{4h} , (h) T_g in T_h . - 7. Construct real-number representations by combining the complex-conjugate paired irreducible representations in the following point groups: (a) C_4 , (b) C_6 , (c) C_5 , (d) C_7 . - 8. Reduce the following representations into their component species (irreducible representations): $$\begin{array}{c|cccc} C_{3\nu} & E & 2C_3 & 3\sigma_{\nu} \\ \hline \Gamma_b & 12 & 0 & 2 \\ \end{array}$$ 9. Reduce the following representations, from groups whose irreducible representations contain imaginary characters, into their component species. 10. Using the transformation properties listed in the character tables, determine the correlations between species of the following groups and their indicated subgroups, presenting your results as correlation diagrams: (a) $$C_{4\nu} \rightarrow C_4$$, (b) $D_{3h} \rightarrow D_3$, (c) $D_{5d} \rightarrow C_{5\nu}$ 11. Assume that the following representations were generated in $C_{2\nu}$ and D_{2h} to avoid working in the molecules' true infinite-order groups, $C_{\omega\nu}$ and $D_{\omega h}$. Determine the species into which each representation reduces, and by correlation determine what the corresponding species would be in the true infinite-order group. $$\begin{array}{c|ccccc} C_{2v} & E & C_2 & \sigma_v & \sigma_v' \\ \hline \Gamma_a & 15 & -5 & 5 & 5 \end{array}$$ | D_{2h} | E | $C_2(z)$ | $C_2(y)$ | $C_2(x)$ | i | $\sigma(xy)$ | $\sigma(xz)$ | $\sigma(yz)$ | |------------|---|----------|----------|----------|----|--------------|--------------|--------------| | Γ_b | 9 | -3 | -1 | -1 | -3 | 1 | 3 | 3 |