Crystal Field Theory History

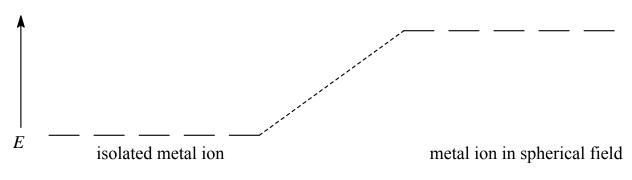
- 1929 Hans Bethe Crystal Field Theory (CFT)
 - Developed to interpret color, spectra, magnetism in crystals
- 1932 J. H. Van Vleck CFT of Transition Metal Complexes
 - Champions CFT to interpret properties of transition metal complexes
 - Show unity of CFT, VB, and MO approaches
- 1932 L. Pauling and J. C. Slater VB theory
 - Apply hybrid orbital concepts to interpret properties of transition metal complexes
 - Becomes dominant theory to explain bonding and magnetism until 1950s
 - Can't explain colors and visible spectra
- 1952 L. E. Orgel Revival of CFT and development of Ligand Field Theory (LFT)
 - Slowly replaces VB theory
 - Explains magnetism and spectra better
- 1954 Y. Tanabe and S. Sugano Semi-quantitative term splitting diagrams
 - Used to interpret visible spectra
- 1960s CFT, LFT, and MO Theories
 - Used in conjunction with each other depending on the level of detail required
 - MO used for most sophisticated and quantitative interpretations
 - LFT used for semi-quantitative interpretations
 - CFT used for everyday qualitative interpretations

CFT Principles

- CFT takes an electrostatic approach to the interaction of ligands and metal ions.
 - In purest form it makes no allowances for covalent M–L bonding.
- CFT attempts to describe the effects of the Lewis donor ligands and their electrons on the energies of *d* orbitals of the metal ion.
- We will consider the case of an octahedral $ML_6(O_h)$ complex first and then extend the approach to other complex geometries.

Energies of *d* orbitals in an Octahedral Complex

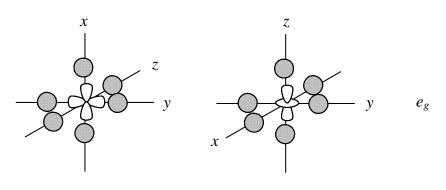
- Consider a spherical field (R_3) equivalent to six electron pairs surrounding a central metal ion, M.
 - Ligand-metal electron repulsions will perturb the energies of the five degenerate *d* orbitals, making them rise in energy.



- Localize the six ligand pairs into the positions of an octahedron $(R_3 \rightarrow O_h)$.
 - Five-fold degeneracy among *d* orbitals will be lifted, in keeping with the direct product listings in the *O_h* character table.
 - The d_{xy} , d_{yz} , d_{xz} orbitals constitute a triply degenerate set of t_{2g} symmetry.
 - The $d_{x^2-y^2}$, d_{z^2} orbitals constitute a doubly degenerate set of e_g symmetry.¹
- The energies of the t_{2g} orbitals and e_g orbitals relative to the perturbed energy of the hypothetical spherical field depend upon their orientation to the six ligand coordination positions.

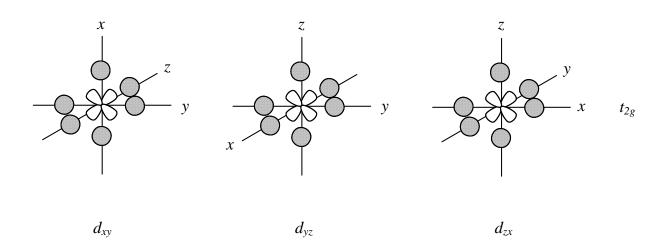
¹The vector product $2z^2 - x^2 - y^2$ indicates the *d* orbital more commonly labeled z^2 .

d Orbitals in an Octahedral Field

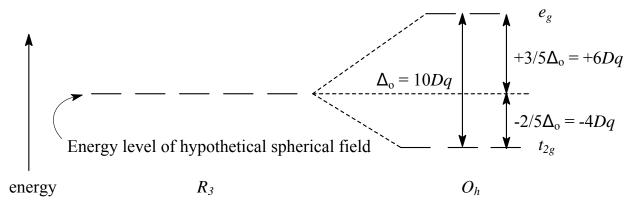


 $d_{x^{2}-y^{2}}$

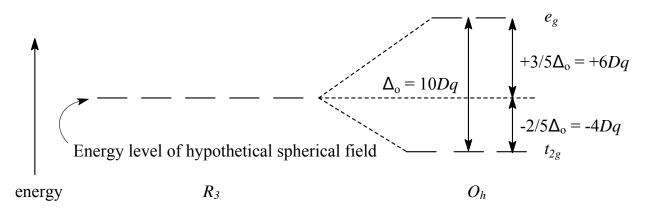
 $d_{2z^2-x^2-y^2} = d_{z^2}$



- The e_g orbitals have lobes that point at the ligands and so will ascend in energy.
- The t_{2g} orbitals have lobes that lie between ligands and so will descend in energy.



Crystal Field Splitting Energy, Δ_0



- The energy gap between t_{2g} and e_g levels is designated Δ_0 or 10Dq.
- The energy increase of the e_g orbitals and the energy decrease of the t_{2g} orbitals must be balanced relative to the energy of the hypothetical spherical field (sometimes called the *barycenter*).
 - The energy of the e_g set rises by $+3/5\Delta_o = +6Dq$ while the energy of the t_{2g} set falls by $-2/5\Delta_o = -4Dq$, resulting in no net energy change for the system.

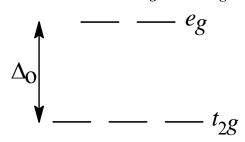
$$\Delta E = E(e_g)^{\uparrow} + E(t_{2g})^{\downarrow}$$

= (2)(+3/5\Delta_o) + (3)(-2/5\Delta_o)
= (2)(+6Dq) + (3)(-4Dq) = 0

- The magnitude of Δ_0 depends upon both the metal ion and the attaching ligands.
- Magnitudes of Δ_0 are typically ~100 400 kJ/mol (~8,375 33,500 cm⁻¹).²

 $^{^{2}1 \}text{ kJ/mol} = 83.7 \text{ cm}^{-1}$

Electron Filling of t_{2g} and e_g Orbitals



- Electrons fill t_{2g} and e_g orbitals in an aufbau manner, starting with the t_{2g} set, in accord with the Pauli exclusion principle and Hund's rule.
 - Spins of successively added electrons are parallel so long as the Pauli exclusion principle allows.
 - At the point when the set of t_{2g} orbitals is half filled, an additional electron must pair if it is to occupy one of the orbitals of the degenerate set.
 - But if the *mean pairing energy* (*P*) is greater than Δ_0 , a lower energy state will result by putting the electron in the higher e_g level.
- For configurations $d^{1} d^{3}$ and $d^{8} d^{10}$ there is only one ground state configuration.
- For configurations $d^4 d^7$ there are two possible filling schemes depending on the magnitudes of *P* and Δ_0 .
 - A *high spin* configuration minimizes pairing by spreading the electrons across both the t_{2g} and e_g levels.
 - A *low spin* configuration minimizes occupying the higher energy e_g level by pairing electrons in the t_{2g} level.
- For a given metal ion, the pairing energy is relatively constant, so the spin state depends upon the magnitude of the field strength, Δ_0 .
 - Low field strength $(\Delta_0 < P)$ results in a high-spin state.
 - *High field* strength $(\Delta_0 > P)$ results in a *low-spin* state.

High- and Low-Spin Configurations for $ML_6 O_h$

e_{g}						<u>1</u> 1	
<i>t</i> _{2g}		<u> 1 </u>	<u>1</u> <u>1</u> <u>1</u>	<u>1</u> <u>1</u> <u>1</u>	1 1 1 L	<u>1</u> <u>1</u> <u>1</u>	
	d^{1}	d^2	d^{3}	d ⁴ high spin	d ⁴ low spin	d ⁵ high spin	<i>d</i> ⁵ low spin
eg	<u>1</u> 1		<u>1</u> 1		<u>1</u> 1	<u>1</u> 1 L	
<i>t</i> _{2g}	1 1 1 ↓	1 L 1 L 1 L	1 1 1 1		1 L 1 L 1 L		
	d ⁶ high spin	d ⁶ low spin	d ⁷ high spin	d ⁷ low spin	d^{8}	d^9	d^{10}

Crystal Field Stabilization Energy (CFSE)³

• Occupancy of electrons in t_{2g} and e_g orbitals results in an overall *crystal field stabilization energy* (CFSE), defined for octahedral complexes as⁴

 $CFSE = (-0.4n_{t_{2g}} + 0.6n_{e_g})\Delta_0 + pP$

where $n_{t_{2g}}$ = number of electrons in t_{2g} orbitals $n_{e_{g}}^{t_{2g}}$ = number of electrons in e_{g} orbitals

p = total number of electron pairs

P = mean pairing energy

Examples of CFSE Calculations

Free Ion O_h		CFSE Calculation	CFSE		
d^3	t_{2g}^{3}	$(3)(-0.4\Delta_{o})$	$-1.2\Delta_{o}$		
d^8	$t_{2g}^{6}e_{g}^{2}$	$[(6)(-0.4) + (2)(+0.6)]\Delta_0 + 3P$	$-1.2\Delta_{\rm o}+3P$		
d^7 low	$t_{2g}^{6}e_{g}^{1}$	$[(6)(-0.4) + (1)(+0.6)]\Delta_0 + 3P$	$-1.8\Delta_{\rm o}+3P$		
d^7 high	$t_{2g}^{5}e_{g}^{2}$	$[(5)(-0.4) + (2)(+0.6)]\Delta_0 + 2P$	$-0.8\Delta_{0} + 2P$		

- For dⁿ cases that could be high- or low-spin, the configuration that results in the lower CFSE for the Δ_o of the complex is the spin state that is observed.
 - For the hypothetical case $\Delta_0 = P$, neither state would be preferred, as the two CFSEs for d^7 illustrate:

 $CFSE(d^{7} low) = -1.8\Delta_{o} + 3P = -1.8\Delta_{o} + 3\Delta_{o} = 1.2\Delta_{o}$ $CFSE(d^{7} high) = -0.8\Delta_{o} + 2P = -0.8\Delta_{o} + 2\Delta_{o} = 1.2\Delta_{o}$

• There are no cases for which $\Delta_0 = P$.

³CFSE is also called Ligand Field Stabilization Energy (LFSE).

⁴Meissler & Tarr use Π_c for the Δ_o term and Π_e for the *P* term in the defining equation. Some sources do not include pairing energy in calculating CFSE.

Complex	d^n	$P(\mathrm{cm}^{-1})$	$\Delta_{o} (\mathrm{cm}^{-1})$	State	CFSE
$[Cr(H_2O)_6]^{2+}$	d^4	18,800	13,900	high	$-0.6\Delta_{o}$
$[Fe(H_2O)_6]^{3+}$	d^5	24,000	13,700	high	0
$[Fe(H_2O)_6]^{2+}$	d^6	14,100	10,400	high	$-0.4\Delta_{\rm o} + P$
$[Fe(CN)_{6}]^{4-}$	d^6	14,100	33,000	low	$-2.4\Delta_{o} + 3P$
$[CoF_{6}]^{3-}$	d^6	16,800	13,000	high	$-0.4\Delta_{\rm o} + P$
$[Co(NH_3)_6]^{3+}$	d^6	16,800	23,000	low	$-2.4\Delta_{o}+3P$
$[Co(H_2O)_6]^{2+}$	d^7	18,000	9,3000	high	$-0.8\Delta_{0} + 2P$

Values of Δ_0 , *P*, CFSE and Resulting Spin State

- Values of Δ_0 depend on both the metal ion and the ligand.
- Most aquo complexes are high spin, because H₂O is a weak-field ligand.
- Almost all Co³⁺ (*d*⁶) complexes are low spin, including $[Co(H_2O)_6]^{3+}$, except $[CoF_6]^{3-}$, which is high spin.
- Second and third row transition metal ions tend to have low spin states.
 - These ions tend to have larger Δ_0 values.
 - Larger 4*d* and 5*d* orbitals result in smaller *P* values, owing to lesser electronic repulsions.
 - 4*d* and 5*d* orbitals overlap with ligand orbitals, delocalizing electron density onto the ligands.

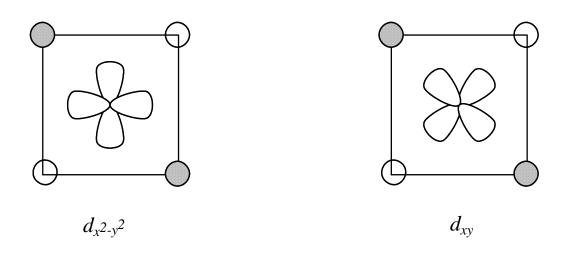
For a given metal ion, the magnitude of Δ_o depends on the ligand and tends to increase according to the following *spectrochemical series*:

$$\label{eq:relation} \begin{split} I^- &< Br^- < Cl^- < F^- < OH^- < C_2O_4^{\ 2-} < H_2O \\ &< NH_3 < en < bipy < phen < CN^- \approx CO \end{split}$$

- *en* = ethylenediamine, *bipy* = 2,2'-bipyradine, *phen* = *o*-phenathroline
- Ligands up through H₂O are *weak-field ligands* and tend to result in high-spin complexes.
- Ligands beyond H₂O are *strong-field ligands* and tend to result in low-spin complexes.

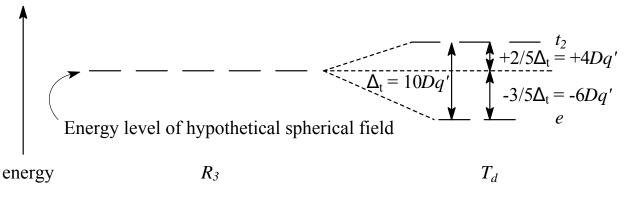
Tetrahedral Crystal Field Splitting

- The same considerations of crystal field theory can be applied to ML_4 complexes with T_d symmetry.
 - In T_d , d_{xy} , d_{yz} , d_{xz} orbitals have t_2 symmetry and $d_{x^2-y^2}$, d_{z^2} orbitals have *e* symmetry.
- Relative energies of the two levels are reversed, compared to the octahedral case.
 - No *d* orbitals point directly at ligands.
 - The t_2 orbitals are closer to ligands than are the *e* orbitals. This can be seen by comparing the orientations of the d_{x^2} . y^2 orbital (*e* set) and d_{xy} orbital (t_2 set) relative to the four ligands.



- The difference results in an energy split between the two levels by Δ_t or 10Dq'. Relative to the barycenter defined by the hypothetical spherical field
 - the *e* level is lower by $-3\Delta_t / 5 = -6Dq'$
 - the t_2 level is higher by $+2\Delta_t / 5 = +4Dq'$

Tetrahedral Crystal Field Splitting - cont.



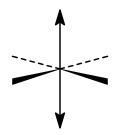
- In principle, both high and low spin configurations are conceivable for d^3-d^6 ML₄ T_d complexes.
- With extremely rare exceptions, only high spin configurations are observed.
 - $\circ \Delta_t$ is much smaller than Δ_o .
 - For a given ligand at the same M-L distances, it can be shown that $\Delta_t = (4/9)\Delta_0$.
 - $\Delta_t \ll P$ in ordinary complexes, so high spin is favored.
- The crystal field stabilization energy for tetrahedral complexes is calculated from the following equation: $CFSE(T_d) = (-0.6n_e + 0.4n_{t_2})\Delta_t + pP$

Crystal Field Splitting for Other Geometries

- We can deduce the CFT splitting of *d* orbitals in virtually any ligand field by
 - Noting the direct product listings in the appropriate character table to determine the ways in which the *d* orbital degeneracies are lifted
 - Carrying out an analysis of the metal-ligand interelectronic repulsions produced by the complex's geometry.
- Sometimes it is useful to begin with either the octahedral or tetrahedral slitting scheme, and then consider the effects that would result by distorting to the new geometry.
 - The results for the perfect and distorted geometries can be correlated through descent in symmetry, using the appropriate correlation tables.
 - Can take this approach with distortions produced by ligand substitution or by intermolecular associations, if descent in symmetry involves a group-subgroup relationship.

Crystal Field for Tetragonally Distorted ML₆

- A tetragonal distortion to an octahedron results from any change in geometry that preserves a C_4 axis.
 - Tetragonal distortion occurs whenever two *trans* related ligands are differentiated from the remaining four.
- A useful tetragonal distortion to consider involves equally stretching two *trans* related ligands, thereby causing a descent in symmetry $O_h \rightarrow D_{4h}$.



- The stretching occurs along the *z* axis, leaving the four positions in the *xy* plane equivalent to each other.
- Ultimately, such a stretching leads to removal of the two ligands, leaving a square planar ML₄ complex.

Splitting of *d* Orbital Degeneracies – $O_h \rightarrow D_{4h}$

- From a correlation table that links the groups O_h and D_{4h} it can be determined that the two e_g orbitals of the octahedral field become nondegenerate as a_{1g} and b_{1g} in the D_{4h} tetragonal field.
 - From the direct product listings in the D_{4h} character table

$$a_{1g} = d_{2z^2 - x^2 - y^2} (= d_{z^2})$$

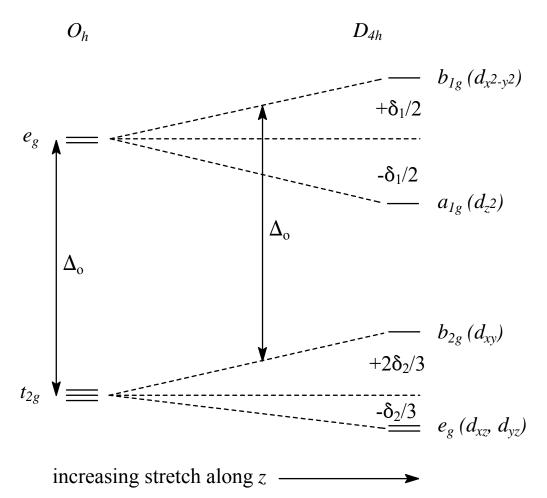
$$b_{1g} = d_{x^2 - y^2}$$

- From the correlation table it can also be shown that the degeneracy among the t_{2g} orbitals in O_h is partially lifted to become b_{2g} and e_g in the D_{4h} tetragonal field.
 - From the direct product listings in the D_{4h} character table

$$b_{2g} = d_{xy}$$
$$e_g = (d_{xz}, d_{yz})$$

- Moving the two ligands away from the central metal ion lowers the repulsions between ligand electrons and the metal electrons in those *d* orbitals that have substantial electron distribution along *z*.
 - Thus the energies of the d_{xz} , d_{yz} , and d_{z^2} orbitals are lowered.
- If we assume that the stretch along *z* is accompanied by a counterbalancing contraction in the *xy* plane, so as to maintain the overall energy of the system, then the orbitals with substantial electron distribution in the *xy* plane will experience increased repulsions.
 - Thus, the d_{xy} and $d_{x^2-y^2}$ orbitals rise in energy.

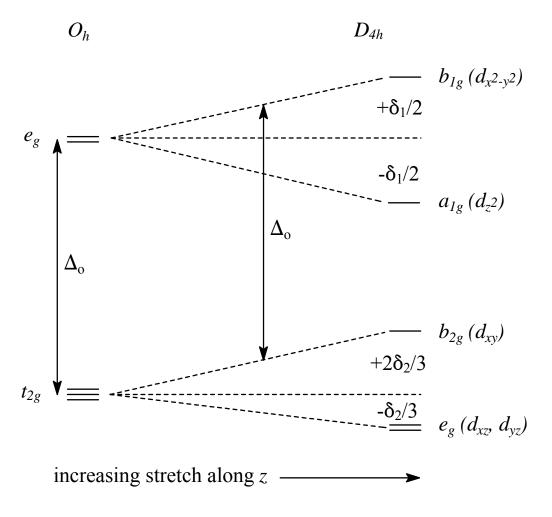
Orbital Splitting from a Stretching Tetragonal Distortion



- The upper e_g orbitals of the perfect octahedron split equally by an amount δ_1 , with the $d_{x^2-y^2}$ orbital (b_{1g} in D_{4h}) rising by $+\delta_1/2$ and the d_{z^2} orbital (a_{1g} in D_{4h}) falling by $-\delta_1/2$.
- The lower t_{2g} orbitals of the perfect octahedron split by an amount δ_2 , with the d_{xy} orbital (b_{2g} in D_{4h}) rising by $+2\delta_2/3$, and the degenerate d_{xz} and d_{yz} orbitals (e_g in D_{4h}) falling by $-\delta_2/3$.

Magnitudes of the δ_1 and δ_2 Splittings

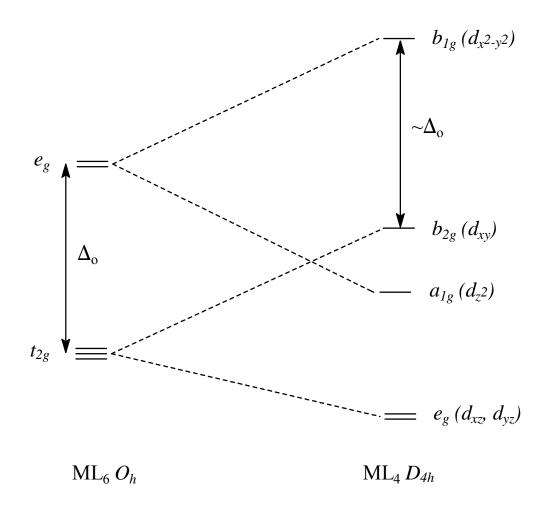
- Both the δ_1 and δ_2 splittings, which are very small compared to Δ_0 , maintain the barycenters defined by the e_g and t_{2g} levels of the undistorted octahedron.
 - The energy gap δ_1 is larger than that of δ_2 , because the $d_{x^2-y^2}$ and d_{z^2} orbitals are directed at ligands.
 - The distortion has the same effect on the energies of both the $d_{x^2-y^2}$ and d_{xy} orbitals; i.e. $\delta_1/2 = 2\delta_2/3$.
 - As a result, the energies of both the $d_{x^2-y^2}$ and d_{xy} rise in parallel, maintaining a separation equal to Δ_0 of the undistorted octahedral field.



• Note that $\delta_1/2 = 2\delta_2/3$ implies that $\delta_1 = (4/3)\delta_2$.

Square Planar ML₄ Complexes

- If we imagine continuing the stretching of M-L bonds along z, the orbital splittings will become progressively greater, producing successively larger values of δ₁ and δ₂.
- Eventually the two ligands will be removed, resulting in a square planar ML₄ complex.
- At some point before this extreme the $a_{1g}(d_{z^2})$ level may cross and fall below the $b_{2g}(d_{xy})$ level, resulting in the following splitting scheme.⁵



⁵The ordering of the lower four *d* orbitals probably varies among square planar complexes and has been the subject of much debate. See A. B. P. Lever, *Inorganic Electron Spectroscopy*, 2nd ed., Elsevier, Amsterdam, 1984, p. 537ff. and references therein.

$ML_4(D_{4h})$ vs. $ML_4(T_d)$

- Most square planar complexes are d^8 and less often d^9 .
- In virtually all d^8 cases a low spin configuration is observed, leaving the upper $b_{1g}(d_{x^2-y^2})$ level vacant in the ground state.
 - This is expected, because square planar geometry in firstrow transition metal ions is usually forced by strong field ligands.
 - Strong field ligands produce a large Δ_0 value.
 - The energy gap between the $b_{2g}(d_{xy})$ and $b_{1g}(d_{x^2-y^2})$ levels is equivalent to Δ_0 .
 - A large Δ_0 value favors pairing in the $b_{2g}(d_{xy})$ level, a low-spin diamagnetic configuration for d^8 .
- Tetrahedral d^8 is a high-spin paramagnetic configuration $e^4t_2^4$.
 - ML₄ (D_{4h}) and ML₄ (T_d) can be distinguished by magnetic susceptibility measurements.
- Ni²⁺ ion tends to form square planar, diamagnetic complexes with strong-field ligands (e.g., [Ni(CN)₄]²⁻), but tends to form tetrahedral, paramagnetic complexes with the weaker-field ligands (e.g., [NiCl₄]²⁻).
- With second and third row transition metal ions the Δ_0 energies are inherently larger, and square planar geometry can occur even with relatively weak field ligands; e.g., square planar [PtCl₄]²⁻.