
Crystal Field Theory History

1929 Hans Bethe - Crystal Field Theory (CFT)

• Developed to interpret color, spectra, magnetism in

crystals

1932 J. H. Van Vleck - CFT of Transition Metal Complexes

• Champions CFT to interpret properties of transition

metal complexes

• Show unity of CFT, VB, and MO approaches

1932 L. Pauling and J. C. Slater - VB theory

• Apply hybrid orbital concepts to interpret properties

of transition metal complexes

• Becomes dominant theory to explain bonding and

magnetism until 1950s

• Can't explain colors and visible spectra

1952 L. E. Orgel - Revival of CFT and development of Ligand

Field Theory (LFT)

• Slowly replaces VB theory

• Explains magnetism and spectra better

1954 Y. Tanabe and S. Sugano - Semi-quantitative term

splitting diagrams

• Used to interpret visible spectra

1960s CFT, LFT, and MO Theories

• Used in conjunction with each other depending on

the level of detail required

• MO used for most sophisticated and quantitative

interpretations

• LFT used for semi-quantitative interpretations

• CFT used for everyday qualitative interpretations



CFT Principles

! CFT takes an electrostatic approach to the interaction of

ligands and metal ions.

• In purest form it makes no allowances for covalent M–L

bonding.

! CFT attempts to describe the effects of the Lewis donor

ligands and their electrons on the energies of d orbitals of

the metal ion.

K We will consider the case of an octahedral ML6 (Oh)

complex first and then extend the approach to other

complex geometries.



Energies of d orbitals in an Octahedral Complex

K Consider a spherical field (R3) equivalent to six electron

pairs surrounding a central metal ion, M.

• Ligand-metal electron repulsions will perturb the energies

of the five degenerate d orbitals, making them rise in

energy.

E
isolated metal ion      metal ion in spherical field

K Localize the six ligand pairs into the positions of an

octahedron (R3 6 Oh).

• Five-fold degeneracy among d orbitals will be lifted, in

keeping with the direct product listings in the Oh character

table.

• The dxy, dyz, dxz orbitals constitute a triply degenerate set of

t2g symmetry.

• The dx2–y2, dz2 orbitals constitute a doubly degenerate set of

eg symmetry.1

! The energies of the t2g orbitals and eg orbitals relative to the

perturbed energy of the hypothetical spherical field depend

upon their orientation to the six ligand coordination positions.

1The vector product 2z2 – x2 – y2 indicates the d orbital more commonly labeled z2.
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d Orbitals in an Octahedral Field

! The eg orbitals have lobes that point at the ligands and so will

ascend in energy.

! The t2g orbitals have lobes that lie between ligands and so will

descend in energy.
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Crystal Field Splitting Energy, Δo

! The energy gap between t2g and eg levels is designated Δo or

10Dq.

! The energy increase of the eg orbitals and the energy decrease

of the t2g orbitals must be balanced relative to the energy of

the hypothetical spherical field (sometimes called the

barycenter).

• The energy of the eg set rises by +3/5Δo = +6Dq while the

energy of the t2g set falls by –2/5Δo = –4Dq, resulting in no

net energy change for the system.

ΔE = E(eg)8 + E(t2g)9

  = (2)(+3/5Δo)  + (3)(–2/5Δo)

  = (2)(+6Dq) + (3)(–4Dq) = 0

! The magnitude of Δo depends upon both the metal ion and the

attaching ligands.

! Magnitudes of Δo are typically ~100 – 400 kJ/mol (~8,375 –

33,500 cm–1).2

21 kJ/mol = 83.7 cm–1



Electron Filling of t2g and eg Orbitals

t
2g
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! Electrons fill t2g and eg orbitals in an aufbau manner, starting

with the t2g set, in accord with the Pauli exclusion principle

and Hund’s rule.

• Spins of successively added electrons are parallel so long

as the Pauli exclusion principle allows.

• At the point when the set of t2g orbitals is half filled, an

additional electron must pair if it is to occupy one of the

orbitals of the degenerate set.

• But if the mean pairing energy (P) is greater than Δo, a

lower energy state will result by putting the electron in the

higher eg level.

! For configurations d 1 – d 3 and d 8 – d 10 there is only one

ground state configuration.

! For configurations d 4 – d 7 there are two possible filling

schemes depending on the magnitudes of P and Δo.

• A high spin configuration minimizes pairing by spreading

the electrons across both the t2g and eg levels. 

• A low spin configuration minimizes occupying the higher

energy eg level by pairing electrons in the t2g level.

! For a given metal ion, the pairing energy is relatively

constant, so the spin state depends upon the magnitude of the

field strength, Δo.

• Low field strength (Δo < P)  results in a high-spin state.

• High field strength (Δo > P) results in a low-spin state.
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Crystal Field Stabilization Energy (CFSE)3

! Occupancy of electrons in t2g and eg orbitals results in an

overall crystal field stabilization energy (CFSE), defined for

octahedral complexes as4

where = number of electrons in t2g orbitals

= number of electrons in eg orbitals

p = total number of electron pairs

P = mean pairing energy

Examples of CFSE Calculations

Free Ion Oh CFSE Calculation CFSE

d 3 t2g
3 (3)(–0.4Δo) –1.2Δo

d 8 t2g
6eg

2 [(6)(–0.4) + (2)(+0.6)]Δo + 3P  –1.2Δo + 3P

d 7 low t2g
6eg

1 [(6)(–0.4) + (1)(+0.6)]Δo + 3P –1.8Δo + 3P

d 7 high t2g
5eg

2 [(5)(–0.4) + (2)(+0.6)]Δo + 2P –0.8Δo + 2P

! For d n cases that could be high- or low-spin, the configuration

that results in the lower CFSE for the Δo of the complex is the

spin state that is observed.

• For the hypothetical case Δo = P, neither state would be

preferred, as the two CFSEs for d 7 illustrate:

CFSE(d 7 low) = –1.8Δo + 3P = –1.8Δo + 3Δo = 1.2Δo

CFSE(d 7 high) = –0.8Δo + 2P = –0.8Δo + 2Δo = 1.2Δo

• There are no cases for which Δo = P.

3CFSE is also called Ligand Field Stabilization Energy (LFSE).

4Meissler & Tarr use Πc for the Δo term and Πe for the P term in the defining equation. 

Some sources do not include pairing energy in calculating CFSE.



Values of Δo, P, CFSE and Resulting Spin State

Complex d n P (cm–1) Δo (cm–1) State CFSE

[Cr(H2O)6]
2+ d 4 18,800 13,900 high –0.6Δo

[Fe(H2O)6]
3+ d 5 24,000 13,700 high 0

[Fe(H2O)6]
2+ d 6 14,100 10,400 high –0.4Δo + P

[Fe(CN)6]
4– d 6 14,100 33,000 low –2.4Δo + 3P

[CoF6]
3– d 6 16,800 13,000 high –0.4Δo + P

[Co(NH3)6]
3+ d 6 16,800 23,000 low –2.4Δo +3P

[Co(H2O)6]
2+ d 7 18,000 9,3000 high –0.8Δo + 2P

! Values of Δo depend on both the metal ion and the ligand.

! Most aquo complexes are high spin, because H2O is a weak-

field ligand.

! Almost all Co3+ (d 6) complexes are low spin, including

[Co(H2O)6]
3+, except [CoF6]

3–, which is high spin.

! Second and third row transition metal ions tend to have low

spin states.

• These ions tend to have larger Δo values.

• Larger 4d and 5d orbitals result in smaller P values, owing

to lesser electronic repulsions.

• 4d and 5d orbitals overlap with ligand orbitals, delocalizing

electron density onto the ligands.



Spectrochemical Series

! For a given metal ion, the magnitude of Δo depends on the

ligand and tends to increase according to the following

spectrochemical series:

I– < Br– < Cl– < F– < OH– < C2O4
2– < H2O 

< NH3 < en < bipy < phen < CN– . CO

• en = ethylenediamine, bipy = 2,2'-bipyradine, 

phen  = o-phenathroline

• Ligands up through H2O are weak-field ligands and tend to

result in high-spin complexes.

• Ligands beyond H2O are strong-field ligands and tend to

result in low-spin complexes.



dx2-y2 dxy

Tetrahedral Crystal Field Splitting

! The same considerations of crystal field theory can be applied

to ML4 complexes with Td symmetry.

• In Td, dxy, dyz, dxz orbitals have t2 symmetry and dx2–y2, dz2

orbitals have e symmetry.  

! Relative energies of the two levels are reversed, compared to

the octahedral case.  

" No d orbitals point directly at ligands.

" The t2 orbitals are closer to ligands than are the e

orbitals.  This can be seen by comparing the orientations

of the dx2-y2 orbital (e set) and dxy orbital (t2 set) relative to

the four ligands.

! The difference results in an energy split between the two

levels by Δt or 10Dq'.   Relative to the barycenter defined by

the hypothetical spherical field  

" the e level is lower by –3Δt /5 = –6Dq'

" the t2 level is higher by +2Δt /5 = +4Dq'
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Tetrahedral Crystal Field Splitting - cont.

! In principle, both high and low spin configurations are

conceivable for d 3–d 6 ML4 Td complexes.  

! With extremely rare exceptions, only high spin configurations

are observed.

 " Δt is much smaller than Δo.

" For a given ligand at the same M-L distances, it can be

shown that Δt = (4/9)Δo.

" Δt << P in ordinary complexes, so high spin is favored. 

! The crystal field stabilization energy for tetrahedral

complexes is calculated from the following equation:

CFSE(Td) = (–0.6ne + 0.4 )Δt + pP



Crystal Field Splitting for Other Geometries

! We can deduce the CFT splitting of d orbitals in virtually any

ligand field by 

• Noting the direct product listings in the appropriate

character table to determine the ways in which the d orbital

degeneracies are lifted 

• Carrying out an analysis of the metal-ligand interelectronic

repulsions produced by the complex’s geometry.  

! Sometimes it is useful to begin with either the octahedral or

tetrahedral splitting scheme, and then consider the effects that

would result by distorting to the new geometry.

• The results for the perfect and distorted geometries can

be correlated through descent in symmetry, using the

appropriate correlation tables.  

• Can take this approach with distortions produced by

ligand substitution or by  intermolecular associations, if

descent in symmetry involves a group-subgroup

relationship.



Crystal Field for Tetragonally Distorted ML6

! A tetragonal distortion to an octahedron results from any

change in geometry that preserves a C4 axis.

• Tetragonal distortion occurs whenever two trans related

ligands are differentiated from the remaining four.

! A useful tetragonal distortion to consider involves equally

stretching two trans related ligands, thereby causing a descent

in symmetry Oh 6 D4h.

• The stretching occurs along the z axis, leaving the four

positions in the xy plane equivalent to each other.

• Ultimately, such a stretching leads to removal of the two

ligands, leaving a square planar ML4 complex.



Splitting of d Orbital Degeneracies – Oh 6666 D4h

! From a correlation table that links the groups Oh and D4h it

can be determined that the two eg orbitals of the octahedral

field become nondegenerate as a1g and b1g in the D4h

tetragonal field.  

• From the direct product listings in the D4h character table

 a1g = d2z2-x2-y2 (= dz2)

b1g = dx2-y2 

! From the correlation table it can also be shown that the

degeneracy among the t2g orbitals in Oh is partially lifted to

become b2g and eg in the D4h tetragonal field.

• From the direct product listings in the D4h character table 

 b2g = dxy 

eg = (dxz, dyz)

! Moving the two ligands away from the central metal ion

lowers the repulsions between ligand electrons and the metal

electrons in those d orbitals that have substantial electron

distribution along z. 

• Thus the energies of the dxz, dyz, and dz2 orbitals are

lowered.  

! If we assume that the stretch along z is accompanied by a

counterbalancing contraction in the xy plane, so as to

maintain the overall energy of the system, then the orbitals

with substantial electron distribution in the xy plane will

experience increased repulsions.

• Thus, the dxy and dx2-y2  orbitals rise in energy.  
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Orbital Splitting from a Stretching Tetragonal Distortion

! The upper eg orbitals of the perfect octahedron split equally

by an amount δ1, with the  dx2-y2 orbital (b1g in D4h) rising by

+δ1/2 and the dz2 orbital (a1g in D4h) falling by –δ1/2.  

! The lower t2g orbitals of the perfect octahedron split by an

amount δ2, with the dxy orbital (b2g in D4h) rising by +2δ2/3,

and the degenerate dxz and dyz orbitals (eg in D4h) falling by

–δ2/3.
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Magnitudes of the δ1 and δ2 Splittings

! Both the δ1 and δ2 splittings, which are very small compared

to Δo, maintain the barycenters defined by the eg and t2g levels

of the undistorted octahedron.

• The energy gap δ1 is larger than that of δ2, because the dx2-y2

and dz2 orbitals are directed at ligands.

• The distortion has the same effect on the energies of both

the dx2-y2 and dxy orbitals; i.e. δ1/2 = 2δ2/3.

L As a result, the energies of both the dx2-y2 and dxy rise in

parallel, maintaining a separation equal to Δo of the

undistorted octahedral field.

• Note that δ1/2 = 2δ2/3 implies that δ1 = (4/3)δ2.
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Square Planar ML4 Complexes

! If we imagine continuing the stretching of M-L bonds along z,

the orbital splittings will become progressively greater,

producing successively larger values of δ1 and δ2.

! Eventually the two ligands will be removed, resulting in a

square planar ML4 complex.  

! At some point before this extreme the a1g (dz2) level may cross

and fall below the b2g (dxy) level, resulting in the following

splitting scheme.5

5The ordering of the lower four d orbitals probably varies among square planar complexes

and has been the subject of much debate.  See A. B. P. Lever, Inorganic Electron Spectroscopy,

2nd ed., Elsevier, Amsterdam, 1984, p. 537ff. and references therein; and, J. Börgl, M. G.

Campbell, and T. Ritter, J. Chem. Educ., 2016, 93, 118.



ML4 (D4h) vs. ML4 (Td)

! Most square planar complexes are d 8 and less often d 9.  

! In virtually all d 8 cases a low spin configuration is observed,

leaving the upper b1g (dx2-y2)  level vacant in the ground state.

• This is expected, because square planar geometry in first-

row transition metal ions is usually forced by strong field

ligands.

• Strong field ligands produce a large Δo value.

• The energy gap between the b2g (dxy) and b1g (dx2-y2) levels is

equivalent to Δo.

L A large Δo value favors pairing in the b2g (dxy) level, a

low-spin diamagnetic configuration for d 8.

! Tetrahedral d 8 is a high-spin paramagnetic configuration e4t2
4.

L ML4 (D4h) and ML4 (Td) can be distinguished by

magnetic susceptibility measurements.

! Ni2+ ion tends to form square planar, diamagnetic complexes

with strong-field ligands (e.g., [Ni(CN)4]
2-), but tends to form

tetrahedral, paramagnetic complexes with the weaker-field

ligands (e.g., [NiCl4]
2–). 

! With second and third row transition metal ions the Δo

energies are inherently larger, and square planar geometry

can occur even with relatively weak field ligands; e.g., square

planar [PtCl4]
2-.


