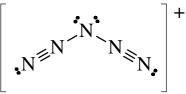

Group 15 (Pnicogens) - The Elements Nitrogen


- N_2 comprises 78% by volume of air.
 - $N_2(g)$ is obtained by fractional distillation of air (b.p. 77K).
 - The very stable N≡N bond (D = 941 kJ/mol) accounts for the inertness of N₂(g) and its utility as a means of achieving a chemically inert atmosphere. (Only Li reacts with it at room temperature.)
- The only molecular species containing just nitrogen were N₂ and the azide ion, N₃⁻⁻, but in 1999 Christe et al.¹ synthesized N₅⁺ by the following reaction

$$[N_2F]^+[AsF_6]^- + HN_3 \xrightarrow{HF} N_5^+[AsF_6]^- + HF$$

• Ab initio calculations predict the following C_{2v} structure:²

- Structure confirmed from low-temperature i.r. and Raman.
- Idealized Lewis structure:

• N₅⁺[AsF₆]⁻ is a strongly oxidizing material that can detonate violently.

¹K. O. Christe, W. W. Wilson, J. A. Sheehy, and J. A. Boatz, *Angew. Chem., Int. Ed.*, **1999**, *38*, 2004.

²Calculated at B3LYP and CCSD(T)/6-311G(2d) levels of theory.

Group 15 - The Elements - Nitrogen (cont.)

• In 2001 Auffermann et al.³ synthesized SrN₂, containing the N₂²⁻ ion, from Sr₂N under nitrogen pressure at 5500 bar at a temperature of 920 K.

 $2Sr_2N + 3N_2 \xrightarrow{5500 \text{ bar/920 K}} 4SrN_2$

- N_2^{2-} is isoelectronic with O_2 and on the basis of MO considerations has a bond order of 2. $(\sigma_{2s})^2(\sigma_{2s}^*)^2(\sigma_{2p})^2(\pi_{2p})^4(\pi_{2p}^*)^2$
- x-ray and neutron diffraction studies from microcrystalline powder samples show an N–N distance of 122.4 pm, comparable to 120.7 for O₂.
- SrN₂ is air- and moisture-sensitive.

³G. Auffermann, Y. Prots, and R. Kniep, Angew. Chem. Int. Ed., 2001, 40, 547.

Group 15 - The Elements - Phosphorous

- Phosphorous occurs in minerals, such as collophanite, Ca₃(PO₄)₂·2H₂O.
 - High temperature fusion with coke and silica yields the element:

 $2Ca_3(PO_4)_2 \cdot 2H_2O + 6SiO_2 + 10C$ Δ $6CaSiO_3 + P_4 + 10CO + 4H_2O$

- There are three basic allotropes and many intermediate forms.
- White phosphorous is the most reactive.
 - Contains strained P₄ tetrahedral units held together by van der Waals forces.
 - Exists in two forms α (cubic) and β (hexagonal).

$$\alpha - P_4 \xrightarrow{> -76.9 \text{ oC}} \beta - P_4$$

• Can be stored under water, but oxidizes with a yellowgreen glow in air and combusts spontaneously above 50 °C or when finely divided:

$$P_4 + 5O_2 \rightarrow P_4O_{10}$$
 $\Delta H^o = -2940 \text{ kJ/mol}$

- Black phosphorous is least reactive form, obtained by heat and pressure from white form.
 - Composed of trigonally coordinated atoms in a puckered sheet structure, similar to graphite.
 - Inert in air up to ~ 400 °C.
- Red phosphorous, an inert and nontoxic form, is obtained from white by heating in an inert atmosphere at 250 °C.
 - Sheet structure with a random network.

Group 15 - The Elements - As, Sb, Bi

- Occur in sulfide minerals of Cu, Ag, and Pb.
- All have metallic forms, but As and Sb have unstable nonmetallic yellow forms, obtained by rapid condensation of vapors, that probably contain M₄ units.
- Stable form of all is α -rhombahedral form, similar to black phosphorous.
- Bi is the heaviest element to have a stable, nonradioactive nucleus.

Oxidation States and Bonding

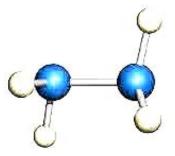
- Principal oxidation states of the group are +5, +3, -3.
 - Nitrogen also has +1, +2, and +4 states, and phosphorous +4 compounds are known, too.
 - Bi does not form compounds with a -3 state.
- Bonding in nitrogen and phosphorous compounds is very different, owing to the different modes of effective bonding available to each.

Mode	Ν	Р
$p\pi$ - $p\pi$	strong	unstable
$p\pi$ - $d\pi$	rare	weak-moderate
hypervalence	no	yes

Nitrogen Chemistry - Hydrides - Ammonia

• Ammonia, the most important hydride of nitrogen, is made by the Haber process.

$$3H_2 + N_2 \xrightarrow{500 \text{ oC/250 atm/Fe}} 2NH_3$$
$$\Delta H^\circ = -92 \text{ kJ}, \ \Delta G^\circ = -33 \text{ kJ}$$

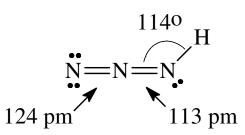

- Liquid NH₃ b.p. = -33.35 °C and $\Delta H_{vap} = 23.677$ kJ/mol.
- $NH_3(l)$ is a moderately good ionizing solvent. $2NH_3 = NH_4^+ + NH_2^ K = 1.9 \times 10^{-33}$ at $-50^{\circ}C$
- In water, NH₃ hydrolyzes to give small amounts of NH₄⁺ and OH⁻, but there is no evidence for the existence of "ammonium hydroxide, NH₄OH."

 $NH_3 + H_2O \Rightarrow NH_4^+ + OH^ K_b = 1.78 \times 10^{-5}$

Ammonia burns in air to give N₂. 4NH₃ + 3O₂ → 2N₂ + 6H₂O
With Pt catalyst, NO is produced instead. 4NH₃ + 5O₂ → 4NO + 6H₂O This is the basis of the Ostwald process for making HNO₃.

Nitrogen Chemistry - Hydrides - Hydrazine

- N_2H_4 is a fuming liquid that functions as a diacidic base: $N_2H_4 + H_2O \Rightarrow N_2H_5^+ + OH^ K_1 = 8.5 \times 10^{-7}$ $N_2H_5^+ + H_2O \Rightarrow N_2H_6^{2+} + OH^ K_2 = 8.9 \times 10^{-10}$
- At 25 °C it appears to have a gauche configuration (C_2).


• It is a powerful reducing agent. $N_2H_4 + 4OH^- \Rightarrow N_2 + 4H_2O + 4e^- \qquad -E^\circ = +1.16 V$

• Hydrazine is made by the Raschig synthesis:

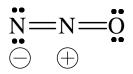
 $2NH_3 + OCl^- \xrightarrow{glue} N_2H_4 + Cl^- + H_2O$

- Reaction proceeds quantitatively at 0 °C with a 3:1 ratio of NH₃ and OCl⁻ by a two-step process: NH₃ + NaOCl → NaOH + NH₂Cl (fast) NH₂Cl + NH₃ + NaOH → N₂H₄ + NaCl + H₂O
- Chloramine, NH_2Cl , is explosive as a solid or liquid.
- Without glue (or gelatin) a parasitic reaction predominates: $2NH_2Cl + N_2H_4 \rightarrow 2NH_4Cl + N_2$
- Hydrazine is metastable (ΔH_f^{o} = +50 kJ/mol) and burns in air, sometimes explosively.
 - It is used as rocket fuel.

Nitrogen Chemistry - Hydrides - Hydrazoic Acid

- Hydrazoic acid, HN₃, is a weak acid ($K_a = 1.8 \times 10^{-5}$)
- HN₃ is obtained by ion exchange of solutions of NaN₃, prepared by either of the following syntheses:

$$3NaNH_{2} + NaNO_{3} \xrightarrow{175 \text{ oC}} NaN_{3} + 3NaOH + NH_{3}$$
$$2NaNH_{2} + N_{2}O \xrightarrow{190 \text{ oC}} NaN_{3} + NaOH + NH_{3}$$


- Pure HN₃ (b.p. 37 °C) is explosive, as are heavy-metal or organic azides (e.g., AgN₃, Pb(N₃)₂).
- Alkali metal azides decompose smoothly when heated: $2NaN_3 \xrightarrow{\Delta} 2Na + 3N_2$ $3LiN_3 \xrightarrow{\Delta} Li_3N + 4N_2$ (Li₃N = lithium nitride)

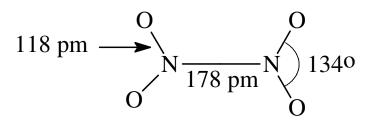
Nitrogen Chemistry - Oxides

- Nitrogen forms at least six oxides, all with $\Delta G_{f}^{\circ} > 0$.
- Nitrous oxide, N₂O, is "laughing gas", made by heating ammonium nitrate.

 $NH_4NO_3 \xrightarrow{\Delta} N_2O + 2H_2O \quad \Delta H^\circ = -26 \text{ kJ}$

• Isoelectronic with CO_2 and also linear $(C_{\infty v})$.

- $\Delta G_{f}^{o} = +103.6 \text{ kJ/mol}$, but it is kinetically quite inert (i.e., metastable).
- Propellant for whipped cream (pH neutral, moderately soluble in cream; FDA approved)
- Thermal decomposition of NH₄NO₃ at moderate temperature yields N₂O, but at high temperature it decomposes explosively by the following reaction: NH₄NO₃ $\rightarrow N_2 + \frac{1}{2}O_2 + 2H_2O$ $\Delta H^\circ = -206$ kJ
- Nitric oxide, NO, is a colorless paramagnetic gas produced in a number of oxidations with NO₂⁻ and NO₃⁻.
 - Bond order is 2.5: $(\sigma_{2s})^2 (\sigma_{2s}^*)^2 (\pi_{2p})^4 (\sigma_{2p})^2 (\pi_{2p}^*)^1$
 - A lab preparation is


$$3KNO_2 + KNO_3 + Cr_2O_3 \xrightarrow{\text{melt}} 2K_2CrO_4 + 4NO$$

Nitrogen Chemistry - Oxides (cont.)

• NO readily oxidizes in air to nitrogen dioxide, NO₂, which exists in equilibrium with its dimer.

 $N_2O_4 \rightleftharpoons 2NO_2 \qquad \Delta H^\circ = 57 \text{ kJ/mol}$ colorless brown

- $K = [N_2O_4]/[NO_2]^2 = 0.67 @25$ °C.
- NO₂ is a free radical
- Both forms are toxic components of smog.
- The dimer has a long N–N bond.

• MO calculations indicate a σ pair delocalized over the entire molecule.

Nitrogen Chemistry - Oxides (cont.)

- N₂O₃ and N₂O₅ are formal anhydrides of HNO₂ and HNO₃, respectively.
- N₂O₃ is an intense blue liquid, formed by oxidation of NO, which is not stable above -30 °C.

$$4NO + O_2 \xrightarrow{< -30 \text{ oC}} 2N_2O_3$$

• N₂O₅ (m. 30 °C, d. 47 °C) can be made by dehydrating HNO₃ with P₄O₁₀.

 $12\text{HNO}_3 + \text{P}_4\text{O}_{10} \rightarrow 6\text{N}_2\text{O}_5 + 4\text{H}_3\text{PO}_4$

It is unstable (sometimes exploding) and is obtained by distillation in a stream of ozonized oxygen.

Nitrogen Oxoacids - HNO₂

- Nitrous acid, HNO₂, can be obtained in solution by acidifying solutions of nitrites: Ba(NO₂)₂(aq) + H₂SO₄(aq) → 2HNO₂(aq) + BaSO₄(s)
- HNO₂ is unstable and has not been obtained pure: $3HNO_2 \rightleftharpoons HNO_3 + 2NO + H_2O$
- Structurally it is HONO, a bent molecule (*C_s*) having structural parameters consistent with its Lewis structure and VSEPR predictions.

$$H \longrightarrow \overset{\text{if}}{\longrightarrow} \overset{\text{if}}{\longrightarrow}$$

• It is a weak acid with
$$K_a = 6.03 \times 10^{-6}$$
.

• Nitrites can function as oxidants or reductants: $HNO_2 + H^+ + e^- \rightarrow NO + H_2O$ $E^\circ = 1.0 V$ $HNO_2 + H_2O \rightarrow NO_3^- + 3H^+ + 2e^ -E^\circ = -0.94 V$

• Nitrite salts are obtained by reducing nitrates: (Chile saltpeter) $2NaNO_3 \xrightarrow{\Delta} 2NaNO_2 + O_2$ (saltpeter) $KNO_3 + Pb \xrightarrow{\Delta} KNO_2 + PbO$

Nitrogen Oxoacids - HNO₃

- Nitric acid is made by a variety of processes.
- Today, most HNO₃ is made by acidifying saltpeter in concentrated sulfuric acid, followed by distillation.

 $2\text{KNO}_3 + \text{conc-H}_2\text{SO}_4 \xrightarrow{0 \text{ oC}} 2\text{HNO}_3 + \text{K}_2\text{SO}_4$

• The classic synthesis is the Ostwald process:

$$4NH_3 + 5O_2 \xrightarrow{750-850 \text{ oC}} 4NO + 6H_2O \qquad \Delta H = -1170\text{kJ}$$

$$2NO + O_2 \rightarrow 2NO_2$$

$$3NO_2 + H_2O \rightarrow 2HNO_3 + NO$$

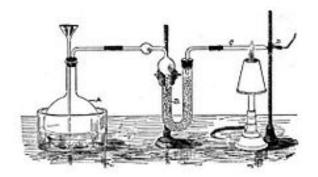
- NO produced in the third step is recycled for use in the second.
- Product is concentrated to 70% (16 M) by distillation.
- HNO₃ photo-decomposes, causing the reagent to turn brown after prolonged exposure to light.

$$4\text{HNO}_3 \stackrel{hv}{\longrightarrow} 4\text{NO}_2 + 2\text{H}_2\text{O} + \text{O}_2$$

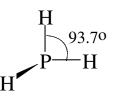
- HNO₃ is not only a strong acid but also a strong oxidant. $4H^+ + NO_3^- + 3e^- \rightarrow NO + 2H_2O$ $E^\circ = +0.96 V$
 - Below 2M there is little oxidizing ability, and it behaves like any other strong acid.

Nitrogen Halides

- The following pure halides are known: NF₃, NCl₃, N₂F₄, NF₂Cl, NFCl₂, XN₃ (X = F, Cl, Br, I).
 - All except NF₃ are metastable.
- Unlike NH₃, NF₃ is a poor Lewis base due to the polarity of the N–F bonds.
- NBr₃ and NI₃ exist as ammonia complexes, which are shock sensitive explosives.


 $5NH_3(aq) + 3I_2 \xrightarrow{NH_3(aq)} NI_3 \cdot NH_3 + 3NH_4I$

Compounds of P, As, Sb, Bi - Hydrides


- All MH₃ hydrides are known.
 - Stability falls off rapidly through the series, and SbH₃ and BiH₃ exist in only trace amounts.
- The Marsh test, a classic qualitative test for the presence of arsenic, is based on the thermal instability of arsine.
 4Zn(s) + 8H⁺(aq) + H₃AsO₄(aq) → AsH₃(g) + 4Zn²⁺(aq) + 4H₂O(l)

 $2AsH_3(g) \xrightarrow{\Delta} 2As(s) + 3H_2(g)$

• As(*s*) forms as a silver mirror on the walls of a heated tube through which the gas is passed.

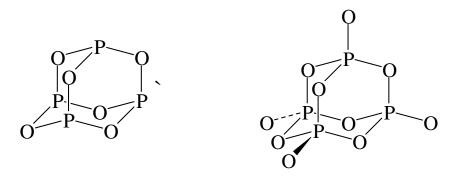
- Unlike NH₃, these other hydrides are neither acid nor base in water.
- Although pyramidal $(C_{3\nu})$ they have small bond angles consistent with LCP considerations and a *p*-only bonding model.

• Less accessible 3*s* lone pair on P makes PH₃ a poorer Lewis base than NH₃.

Compounds of P, As, Sb, Bi - Halides

- Both MX₃ and MX₅ halides can be formed by direct combination.
- Except PF₃, all MX₃ halides hydrolyze in water.
 - PX_3 and AsX_3 hydrolyze to the +3 oxoacids: $PX_3 + 3H_2O \rightarrow 3HX + H_3PO_3$ (not PF_3) $AsX_3 + 3H_2O \rightarrow 3HX + H_3AsO_3$
 - SbX₃ and BiX₃ hydrolyze to give solutions containing the antimonyl and bismuthyl cations, respectively.

 $\begin{array}{rll} \mathrm{SbX}_3 + \mathrm{H}_2\mathrm{O} \rightarrow & 2\mathrm{HX} + \mathrm{SbO^+} + \mathrm{X^-} \\ \mathrm{BiX}_3 + \mathrm{H}_2\mathrm{O} \rightarrow & 2\mathrm{HX} + \mathrm{BiO^+} + \mathrm{X^-} \end{array}$

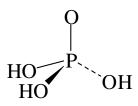

- The MX₅ halides include MF₅, PCl₅, PBr₅, and SbCl₅.
 - PX₅ halides hydrolyze to H₃PO₄, the +5 oxoacid. PX₅ + 4H₂O \rightarrow H₃PO₄ + 5HX
 - In limited water, phosphoryl halides are formed as molecular species.

 $PX_5 + H_2O \rightarrow POX_3 + 2HX$

• Organic derivatives of phosphoryl halides can be formed: $POX_3 + 3ROH \rightarrow (RO)_3PO + 3HX$ $POX_3 + 3RMgX \rightarrow R_3PO + 3MgX_2$

Phosphorous Oxides and Oxoacids

- When P_4 is burned, either P_4O_6 or P_4O_{10} is formed, depending on the oxygen supply.
 - Both structures have T_d symmetry.


 Adding P₄O₁₀ to water gives several oxoacids, most importantly *orthophosphoric* acid, H₃PO₄ (usually called *phosphoric* acid).

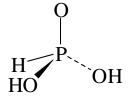
 $P_4O_{10} + 6H_2O \rightarrow 4H_3PO_4$ (+ others)

• In addition to P₄O₁₀ hydrolysis, H₃PO₄ is commercially prepared as follows:

 $Ca_3(PO_4)_3 + 3H_2SO_4 \rightarrow 2H_3PO_4 + 3CaSO_4$

- Phosphoric acid is supplied as an 85% solution with a syrupy consistency.
- The structure is $C_{3\nu}$.

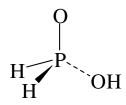
• H₃PO₄ is triprotic:


 $K_1 = 7.5 \ge 10^{-3}, K_2 = 6.2 \ge 10^{-8}, K_3 = 4.2 \ge 10^{-13}$

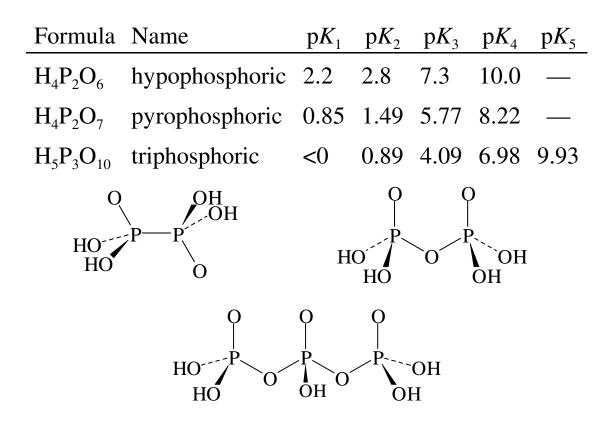
Phosphorous Oxides and Oxoacids (cont.)

• Adding P_4O_6 to water gives *orthophosphorous* acid (also called *phosphorus* acid or *phosphonic* acid).

 $P_4O_6 + 6H_2O \rightarrow 4H_3PO_3$


- H_3PO_3 is a deliquescent, clear solid.
- It has a tetrahedral structure with a non-acidic P–H bond (C_s) .

- H₃PO₃ is a diprotic acid: $K_1 = 1.6 \text{ x} 10^{-2}, K_2 = 7 \text{ x} 10^{-7}$
- *Hypophosphorous* acid (also called *phosphinic* acid), H₃PO₂, is obtained as a white solid following oxidation of PH₃ with I₂ in water:


 $PH_3 + 2I_2 + 2H_2O \rightarrow H_3PO_2 + 4HI$

• It has a tetrahedral structure (C_s) with two non-acidic P–H bonds.

• H_3PO_2 is a monoprotic acid with $K \approx 10^{-2}$.

Higher Phosphoric Acids and Anions

Oxides and Oxoacids of As, Sb, Bi

- As, Sb, and Bi form the +3 oxides when burned in air (n.b., greater stability of lower state for heavier group 15 elements).
 - As_4O_6 and Sb_4O_6 are molecular and isostructural with P_4O_6 .
 - Bi_2O_3 is ionic
- As and Sb +5 oxides are *not* isostructural with P_4O_{10} , and their formulas are usually written As_2O_5 and Sb_2O_5 .
- Arsenic acid, H₃AsO₄, is analogous to H₃PO₄ but somewhat weaker.

 $K_1 = 5.6 \text{ x } 10^{-3}, K_2 = 1.0 \text{ x } 10^{-7}, K_3 = 3.0 \text{ x } 10^{-12}$

• As the Marsh test suggests, it is a moderately strong oxidizing agent.

 $H_3AsO_4 + 2H^+ + 2e^- \Rightarrow H_3AsO_3 + H_2O \qquad E^\circ = +0.559 V$

- Arsenous acid, H₃AsO₃, functions as a monoprotic acid with $K_a = 5.1 \times 10^{-10}$.
 - Raman spectra show that in acidic solutions of As_4O_6 the only detectable species is pyramidal $As(OH)_3 (C_{3\nu})$.