Hydrogen - The Element

- Discovered by Cavendish in 1766 and named by Lavoisier. Gk., *hydro* = water + *genes* = forming
- Most abundant element in the universe.
 - 90% of all atoms
 - \sim 3/4 of all mass
- Elemental form, $H_2(g)$, is rare in the atmosphere because hydrogen is reactive.
 - H₂ reacts with virtually all other elements (except noble gases), often explosively.
 - However, H_2 is not exceptionally reactive, due to the stability of its bond (D = 434.1 kJ/mol).

Synthesis

- Laboratory syntheses for impure H₂(g)
 - active metal in acid: $Zn + 2H^+ \rightarrow H_2 + Zn^{2+}$
 - hydrolysis of hydride: $CaH_2 + 2H_2O \rightarrow Ca(OH)_2 + 2H_2$
 - electrolysis: $2H_2O + 2e^- \rightarrow H_2 + 2OH^- E^0 = -0.82806 V$
- Industrial: Bosch process (water-gas shift reaction) Reduction of H₂O over white-hot coke to produce "water gas", which makes more H₂ by the water-gas shift reaction.

$$C + H_2O$$
 Δ $CO + H_2$

coke water gas

 $H_2 + CO + H_2O$ $\stackrel{Fe}{=}$ $CO_2 + 2H_2$
 CO_2 removed by scrubbing: $Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O$

• Industrial: Cracking of light hydrocarbons.

$$CH_4 + H_2O \xrightarrow{800^{\circ}C} CO + 3H_2$$

$$C_3H_6 + 3H_2O \xrightarrow{800^{\circ}C} 3CO + 6H_2$$

Classifying Hydrogen Alkali Metal?

• Although Hydrogen forms H⁺, like the alkali metals, it should not be classified as a group 1 element, because its ionization potential is too high.

$$H(g) \rightarrow H^{+}(g) + e^{-}$$
 $I = 1310 \text{ kJ}$
 $K(g) \rightarrow K^{+}(g) + e^{-}$ $I = 418 \text{ kJ}$

- H⁺ requires stabilization and in solution only exists as molecular species such as NH₄⁺, H₃O⁺, etc.
- In compounds, H⁺ only forms covalent compounds, unlike the alkali metals whose compounds are mainly ionic.

Classifying Hydrogen Halogen?

- Hydrogen forms some compounds in which it is H⁻ (hydride ion), and it has a negative (favorable) electron affinity, like typical halogens.
- Unlike typical halides, the overall enthalpy of formation of the hydride ion is endothermic.

$$1/2H_2(g) \rightarrow H(g)$$
 $e^- + H(g) \rightarrow H^-(g)$
 $e^- + 1/2H_2(g) \rightarrow H^-(g)$
 $A = -67 \text{ kJ/mol}$
 $A = -67 \text{ kJ/mol}$

- H⁻ requires a small and very electropositive element to stabilize it in a crystal lattice.
- Radius of H⁻ is highly variable:
 126 pm in LiH
 154 pm in CsH

Isotopes

$$_{1}^{2}H = D$$
 $_{1}^{3}H = T$

- Deuterium is 0.0156% of naturally occurring hydrogen.
 - Often obtained as D₂O, produced after prolonged electrolysis of natural water.
 - D₂O is concentrated during electrolysis because reduction of H₂O is kinetically and thermodynamically favored over D₂O.
- Tritium is only about 1:10¹⁷ in natural hydrogen.
 - Tritium is a beta emitter with $t_{1/2} = 12.4$ yr.
 - Produced naturally by cosmic rays in the upper atmosphere.
 - Produced commercially in nuclear reactors:

$${}^{6}_{3}\text{Li} + {}^{1}_{0}\text{n} \rightarrow {}^{4}_{2}\text{He} + {}^{3}_{1}\text{H}$$

Compounds of Hydrogen

- Hydrogen compounds can be classified as the following five types:
 - Saline hydrides
 - Hydride complexes
 - Covalent hydrides
 - Macromolecular complexes
 - Interstitial hydrides

Saline Hydrides

• Group 1 and 2 elements form saline hydrides, which contain H⁻ ion, by direct combination:

$$Ca + H_2 \longrightarrow CaH_2$$

• Saline hydrides react with protonic solvents to give H₂.

$$\text{LiH} + \text{H}_2\text{O} \rightarrow \text{LiOH} + \text{H}_2$$

 $\text{NaH} + \text{CH}_3\text{OH} \rightarrow \text{NaOCH}_3 + \text{H}_2$

• When molten saline hydrides are electrolyzed, H₂ is evolved at the anode.

$$H^- \rightarrow \frac{1}{2}H_2 + e^ -E^\circ = +2.25 \text{ V}$$

Hydride Complexes

• Most important are MH₄⁻ complexes of group 13 elements.

$$8\text{LiH} + \text{Al}_2\text{Cl}_6 \xrightarrow[(\text{C}_2\text{H}_5)_2\text{O}]{} 2\text{LiAlH}_4 + 6\text{LiCl}$$

$$4\text{NaH} + \text{B(OCH}_3)_3 \longrightarrow \text{NaBH}_4 + 3\text{NaOCH}_3$$

• Stability of MH₄⁻ complexes decreases with increasing atomic number of M and decreasing bond strength:

$$BH_4^- > AlH_4^- > GaH_4^- >> InH_4^-$$

• Vigor of water hydrolysis is in the same order:

$$BH_4^- + 4H_2O \Rightarrow B(OH)_3 + OH^- + 4H_2$$

weak base strong base

- BH₄⁻ reacts initially, making the solution basic, then dissolves without further hydrolysis.
- GaH₄ explodes on contact with water!
- MH₄⁻ compounds are more useful than saline hydrides in syntheses, because they are soluble in ether and their reactions are more controlled.

Covalent Hydrides

- Familiar covalent compounds in which H has a formal oxidation state of +1.
- Strength of X-H bond tends to increase with difference in electronegativity and decrease with mass of X (X = nonmetal, Sn, As, Sb).
- Direct combination is typical synthesis with electronegative elements:

$$H_2 + Cl_2 \rightarrow 2HCl$$

$$H_2 + \frac{1}{2}O_2 \to H_2O$$

• With less electronegative elements, metal salts of the non-hydrogen element may be used:

$$Ca_3P_2 + 6H_2O \rightarrow 3Ca(OH)_2 + 2PH_3$$

 $FeS + 2HCl(aq) \rightarrow FeCl_2(aq) + H_2S$
 $Mg_2Si + 4NH_4Br \longrightarrow 2MgBr_2 + 4NH_3 + SiH_4$

• LiAlH₄ can also act as a hydrogenating agent:

$$8BCl_3 + 6LiAlH_4 \longrightarrow 4B_2H_6 + 6LiCl + 3Al_2Cl_6$$

$$2SnCl_4 + 2LiAlH_4 \longrightarrow 2SnH_4 + 2LiCl + Al_2Cl_6$$

Macromolecular Hydrides

- BeH₂ and MgH₂ have similar reactivity to saline hydrides, but they are more covalent.
- The solids contain infinite chains of tetrahedrally coordinated Be or Mg with –H– bridges.

• The hydrogen bridges are electron-deficient 3c-2e bonds.

Η

2 Be

Interstitial Hydrides

- Hydrogen reacts with most transition metals and lanthanides to form interstitial hydrides, M_xH_y , with no fixed stoichiometry.
- These are better regarded as phases, rather than true compounds.
- The hydrogen atoms occupy interstitial holes in the metallic structure.
- These phases are often catalytically important.
- CuH is a true hydride compound with a fixed stoichiometry.

Hydrogen Bonding

Hydrogen bonding occurs when H in an X-H bond (X = N, O,
 F) is attracted to another very electronegative atom.

$$X-H\cdots Y$$
 $(X = Y \text{ or } X \neq Y)$

- Weak hydrogen bonding may occur in cases such as HCN, HCl₂⁻, etc.
- Most hydrogen bonding is weak (~4 − 40 kJ/mol), asymmetric, and nearly linear.
 - O···H bond in H₂O is $D \approx 21$ kJ/mol.
 - Strongest hydrogen bond is that in F–H–F⁻ ($D \approx 212$ kJ/mol) in KHF₂, which is symmetrical and linear ($d_{HF} = 114.5$ pm).
- Most hydrogen bonds are a result of electrostatic attraction, but that in HF_2^- is better treated as a 3c-4e bond.

Physical Evidence of Hydrogen Bonding

1. X–Y distance much shorter than the sum of van der Waals radii.

$$r_{\text{vw}}(\text{O}) = 150 \text{ pm } d_{\text{O-O}}(\text{H}_2\text{O}) = 276 \text{ pm} < 2r_{\text{vw}}(\text{O}) = 300 \text{ pm}$$

- 2. $X-H\cdots Y \text{ angle } \sim 109^{\circ} 180^{\circ}$
 - Close to 180° is typical.
- 3. Changes in vibrational frequency
 - X–H stretch lowered (>100 cm⁻¹), broader, weaker
 - X–H bend raised
- 4. NMR changes
 - Line at lower field due to deshielding and inhibited electron circulation.
 - Line rises under bond breaking conditions (e.g., higher temperature, dilution)
- 5. Unusually high melting points, boiling points, and heats of vaporization.

Melting Points and Boiling Points of Molecular Hydrides

Melting- and boiling-points of the molecular hydrides and the noble gases. (After J.J. Lagowski (1973) *Modern Inorganic Chemistry*, Marcel Dekker, New York, p. 174.)

Enthalpies of Vaporization of Molecular Hydrides

Enthalpies of vaporisation of molecular hydrides and noble gases at their boiling-points.

Intermolecular vs. Intramolecular Hydrogen Bonds

• Intermolecular hydrogen bonding (between molecules) is most common.

$$(HCO_2H)_2$$
 $(HF)_n$ $(H_2O)_n$
D 29.8 kJ/mol 28.6 kJ/mol 21 kJ/mol

• Intramolecular cases are less common.

$$H_3C$$
 $C=N$
 $N=C$
 $N=C$
 H_3C
 $C=N$
 $N=C$
 $N=C$
 CH_3

bis(dimethylglyoximato)nickel(II)

• A few cases of intramolecular bonds to polar double bonds or π -systems are known.

$$\begin{array}{c|c} H & CH_2 \\ \hline C & CH_2 \\ \hline CH_2 & CH_2 \\ \end{array}$$

Water - Ice

- Water is extensively hydrogen bonded in both solid and liquid.
- Ice has at least nine structural modifications at various T and P conditions.
- At 0 °C and 1 atm, the form is Ice I, an open structure built of puckered sheets of six-member oxygen rings held together by hydrogen bonds.

- Each O is tetrahedrally coordinated to four H atoms, two by hydrogen bonding and two by covalent bonding.
- Open shafts in Ice I make it less dense than liquid water, which is why ice floats on liquid water.

Water - Liquid

- Much of the solid structure is retained in liquid water.
- Short-range order exists, with non-network water in the interstices of the expanded network.
- Interstitial water makes the density greater than in ice.
- Maximum density occurs at 3.98 °C.

Hydroxonium Cations

- Hydronium ion exists mainly in aqueous solutions, but some ionic salts contain H₃O⁺ and other hydroxonium ions.
- p-toluenesulfonic acid monohydrate is [H₃O⁺][CH₃C₆H₄SO₃⁻].¹

H–O (pm)	101.1	101.3	100.8
∠ H–O–H (°)	110.7	109.2	111.2

- HClO₄·H₂O is [H₃O⁺][ClO₄⁻], which is isomorphous with NH₄ClO₄.
- $H_5O_2^+$ exists in $HCl\cdot 2H_2O$, $HCl\cdot 3H_2O$, and $HClO_4\cdot 2H_2O$.
 - Structurally, $H_5O_2^+$ is $H_2O\cdot H\cdot OH_2$, with short $O\cdots O$ distances (241-245 pm) and variable central H position from centrosymmetric $H_5O_2^+$ to the hydrate $H_3O^+\cdot H_2O$.
- HBr·4H₂O is actually $[H_7O_3^+][H_9O_4^+][Br^-]_2[H_2O]$.
- Higher hydronium ions can be considered to be H₃O⁺ with one, two, or three waters of hydration.

¹Jan-Olof Lundgren and Jack M. Williams, *J. Chem. Phys.*, **1973**, *58*, 788.

Structure of H₉O₄⁺ Cation²

Structure of $H_9O_4^+$ in $[H_9O_4^+][CB_{11}H_6Br_6^-]$

distance	pm	angle	deg
O1···O2	250.5	O2-O1-O3	103.4
O1···O3	250.6	O2-O1-O4	117.0
O1···O4	253.2	O3-O1-O4	104.0

²Z. Xie, R. Bau, C. A. Reed, *Inorg. Chem.*, **1995**, *34*, 5403.