Thermodynamics of Crystal Formation

• All stable ionic crystals have negative standard enthalpies of formation, ΔH°_{f} , and negative standard free energies of formation, ΔG°_{f} .

Na(s) + ½ Cl₂(g) → NaCl(s) $\Delta H^{o}_{f} = -410.9 \text{ kJ}$ $\Delta G^{o}_{f} = -384.0 \text{ kJ}$ Cs(s) + ½ Cl₂(g) → CsCl(s) $\Delta H^{o}_{f} = -442.8 \text{ kJ}$ $\Delta G^{o}_{f} = -414.4 \text{ kJ}$ Mg(s) + ½O₂(g) → MgO(s) $\Delta H^{o}_{f} = -385.2 \text{ kJ}$ $\Delta G^{o}_{f} = -362.9 \text{ kJ}$ Ca(s) + C(s) + ³/₂ O₂(g) → CaCO₃(s) $\Delta H^{o}_{f} = -1216.3 \text{ kJ}$ $\Delta G^{o}_{f} = -1137.6 \text{ kJ}$

- The exothermic and spontaneous formation of ionic solids can be understood in terms of a Hess's Law cycle, called the Born-Haber cycle.
- The lattice energy is the most important factor in making the formation of ionic crystals exothermic and spontaneous.
- Lattice energy, *U*, is defined as the enthalpy required to dissociate one mole of crystalline solid in its standard state into the gaseous ions of which it is composed; e.g.,

 $NaCl(s) \rightarrow Na^{+}(g) + Cl^{-}(g)$ U = +786.8 kJ

- ✓ Defined in this way, lattice energy is a positive (endothermic) quantity.
- ✓ Sometimes lattice energy is defined by the reverse reaction, in which case the values are negative (exothermic).

Born-Haber Cycle for NaCl(s)

$$Na^{+}(g) + CF(g)$$

$$I = +496 \text{ kJ} \land A = -349 \text{ kJ}$$

$$Na(g) + CI(g)$$

$$\Delta H_{\text{sub}}^{0} = +107.7 \text{ kJ} \land I/2D = +121.7 \text{ kJ}$$

$$Na(s) + 1/2CI_{2}(g) \xrightarrow{} AH_{f}^{0} = -410.9 \text{ kJ}$$

$$NaCI(s)$$

$$\begin{array}{ll} \operatorname{Na}(s) \to \operatorname{Na}(g) & \Delta H^{\circ}_{sub} = 107.7 \text{ kJ} \\ \operatorname{Na}(g) \to \operatorname{Na}^{+}(g) + e^{-} & I = 496 \text{ kJ} \\ \frac{1}{2}\operatorname{Cl}_{2}(g) \to \operatorname{Cl}(g) & \frac{1}{2}D = 121.7 \text{ kJ} \\ \operatorname{Cl}(g) + e^{-} \to \operatorname{Cl}^{-}(g) & A = -349 \text{ kJ} \\ \operatorname{Na}^{+}(g) + \operatorname{Cl}^{-}(g) \to \operatorname{Na}\operatorname{Cl}(s) & -U = ? \\ \end{array}$$

$$\begin{array}{l} \operatorname{Na}(s) + \frac{1}{2}\operatorname{Cl}_{2}(g) \to \operatorname{Na}\operatorname{Cl}(s) & \Delta H^{\circ}_{f} = -410.9 \text{ kJ} \end{array}$$

 $\Rightarrow \quad \Delta H^{o}_{f} = \Delta H^{o}_{sub} + I + \frac{1}{2}D + A - U$

$$\therefore \quad U = \Delta H^{\circ}_{sub} + I + \frac{1}{2}D + A - \Delta H^{\circ}_{f}$$

= 107.7 kJ + 496 kJ + 121.7 kJ + (-349 kJ) - (-410.9 kJ)
= 787 kJ

Factors Favoring a More Stable Crystal Lattice

Large values of lattice energy, U, are favored by

- 1. Higher ionic charges
- 2. Smaller ions

-

3. Shorter distances between ions

	F^-	Cl⁻	Br ⁻	I⁻	O ^{2–}
Li ⁺	1049.0	862.0	818.6	762.7	2830
Na^+	927.7	786.8	751.8	703	2650
\mathbf{K}^+	825.9	716.8	688.6	646.9	2250
Rb^+	788.9	687.9	612	625	2170
Cs^+	758.5	668.2	635	602	2090
Mg^{2+}		2522			3795
Ca ²⁺		2253			3414
Sr^{2+}		2127			3217

Selected Lattice Energies, U_o (kJ/mol) (Born-Haber Cycle Data)

Calculating Lattice Energy

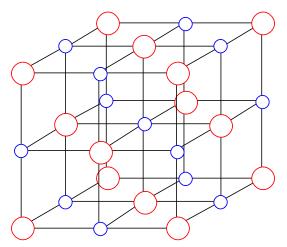
- ✓ In principle, the lattice energy for a crystal of known structure can be calculated by summing all the attractive and repulsive contributions to the potential energy.
- For a pair of gaseous ions

$$U = \frac{Z^+ Z^-}{r_o} \left(\frac{e^2}{4\pi\varepsilon_o}\right)$$

where Z^+, Z^- = ionic charges r_0 = distance between ions e = electronic charge = 1.602×10^{-19} C

- $4\pi\epsilon_{o}$ = vacuum permittivity = $1.11 \times 10^{-10} \text{ C}^2 \cdot \text{J}^{-1} \cdot \text{m}^{-1}$
- Potential energy is negative for the attraction of oppositely charged ions and positive for repulsion of like-charged ions.
- The potential energy arising from repulsions and attractions acting on one reference ion can be calculated.
- Scaled up to a mole of ion pairs (and with a change of sign) this should equal the lattice energy of the crystal.

Calculating U for NaCl



Consider the potential energy arising from attractions and repulsions acting on a central Na^+ ion of NaCl.

Neighbors	Distanc e
6 Cl ⁻	r _o
12 Na ⁺	$\sqrt{2}r_{\rm o}$
8 Cl-	$\sqrt{3}r_{\rm o}$
6 Na ⁺	$\sqrt{4}r_{\rm o}$
24 Cl ⁻	$\sqrt{5}r_{\rm o}$
•••	•••

$$U = \frac{Z^{+}Z^{-}}{r_{o}} \left(\frac{e^{2}}{4\pi\varepsilon_{o}}\right) \left(6 - \frac{12}{\sqrt{2}} + \frac{8}{\sqrt{3}} - \frac{6}{\sqrt{4}} + \frac{24}{\sqrt{5}} + \ldots\right)$$

The series in parentheses converges at a value that defines the *Madelung constant, M*.

Calculating U for NaCl

• For a mole of ion pairs (*N*), using the Madelung constant (*M*), the expression for the potential energy of an NaCl-type lattice due to Coulombic interactions is

$$U = \frac{NMZ^{+}Z^{-}}{r_{o}} \left(\frac{e^{2}}{4\pi\varepsilon_{o}}\right)$$

- For the NaCl-type lattice M = 1.74756, and for NaCl $r_0 = 280$ pm. Using these values, $U_{\text{NaCl}} = -867$ kJ/mol, which is too negative (cf., -786.8 kJ/mol from Born-Haber data).
 - Discrepancy arises from assuming ions are point charges.
 - Electron clouds of adjacent ions repel each other as they approach one another.
- Born proposed that the repulsive (positive) contribution to the potential energy is given by

$$U_{\rm rep} = \frac{NB}{r^n}$$

where *B* is a constant specific to the ionic compound and *n* is a power in the range 6 - 12.

• Adding the Born repulsion correction to the Coloumbic term gives

$$U = \frac{NMZ^+Z^-}{r} \left(\frac{e^2}{4\pi\varepsilon_o}\right) + \frac{NB}{r^n}$$

Born-Landé Equation

 \checkmark At $r = r_0$ the potential energy must be a minimum, so

$$\left(\frac{dU}{dr}\right)_{r_{o}} = 0 = \frac{-NMZ^{+}Z^{-}e^{2}}{4\pi\varepsilon_{o}r_{o}^{2}} - \frac{nNB}{r_{o}^{n+1}}$$

Solving for *B* gives

$$B = \frac{-MZ^+Z^-e^2r_0^{n-1}}{4\pi\varepsilon_0 n}$$

✓ Substituting for *B* in the equation for the Coulombic and Born contributions to potential energy gives the *Born-Landé equation*,

$$U_{\rm o} = \frac{NMZ^+Z^-e^2}{4\pi\varepsilon_{\rm o}r_{\rm o}} \left(1 - \frac{1}{n}\right)$$

- The value of *n* can be calculated from measurements of compressibility or estimated from theory.
- For NaCl, n = 9.1 from experiment, and the Born-Landé equation gives $U_0 = -771$ kJ/mol.
- In the absence of experimental data, Pauling's approximate values of *n* can be used.

Ion configuration	He	Ne	Ar, Cu^+	Kr, Ag ⁺	Xe, Au ⁺
n	5	7	9	10	12

Born-Mayer Equation

- Born-Landé values are approximate.
- Mayer showed that $e^{-r/\rho}$, where ρ is a constant dependant on the compressibility of the crystal, gives a better repulsion term than $1/r^n$.
- Using this improved repulsion term leads to the *Born-Mayer equation*:

$$U_{\rm o} = \frac{NMZ^+Z^-e^2}{4\pi\varepsilon_{\rm o}r_{\rm o}} \left(1 - \frac{\rho}{r_{\rm o}}\right)$$

- $\rho = 30$ pm works well for all alkali metal halides and other simple cases when r_0 values are in pm.
- Further refinements involve terms for van der Waals (dispersion) energy and evaluation of the zero point energy.

Kapustinskii's Equation

• In the absence of detailed structural data, *Kapustinskii's equation*¹ can be used to estimate *U*:

$$U = \frac{1.202 \times 10^5 \ VZ^+Z^-}{r^+ + r^-} \left(1 - \frac{34.5}{r^+ + r^-}\right)$$

where r^+ and r^- are ionic radii (pm) and V is the number of ions per formula unit (e.g., 2 for NaCl, 3 for CaCl₂).

• Kapustinskii's equation has been used with ionic compounds containing polyatomic ions as a means of calculating their *thermochemical radii*, in which the ions are treated as spheres.²

Ion	r	Ion	r
	(pm)		(pm)
NO_3^{-}	189	SO ₄ ²⁻	230
BrO_3^{-}	191	CrO ₄ ²⁻	240
IO_4^{-}	249	BeF ₄ ²⁻	245
$\mathrm{BF_4}^-$	228	BO ₃ ³⁻	191
CO ₃ ^{2–}	185	PO ₄ ³⁻	238

¹A. F. Kapustinskii, "Lattice energy of ionic crystals," *Quart. Rev. Chem. Soc.*, **1956**, *10*, 283–294.

²Data from R. B. Heslop and K. Jones, *Inorganic Chemistry: A Guide to Advanced Study*, Elsevier, Amsterdam, 1976, p. 123.