Point Groups of Molecules

Chemists in general and spectroscopists in particular use the Schönflies notation; crystallographers use the Hermann-Mauguin notation.

Schönflies	Hermann-Mauguin
C_1	1
C_s	m
C_2	2
C_{2v}	mm
D_2	222
D_{3h}	(3/ <i>m</i>) <i>mm</i>

Examples

	Nonrotational Groups	
Symbo	ol Operations	
C_1	<i>E</i> (asymmetric)	
C_s	E, σ_h	
C_i	<i>E, i</i>	
	Single-axis Groups	
Symbo	ol Operations	$(n = 2, 3,, \infty)$
C_n	$E, C_n,, C_n^{n-1}$	
C_{nv}	<i>E</i> , C_n ,, C_n^{n-1} , $n\sigma_v$ ($n/2 \sigma_v$ and $n/2 \sigma_d$ if n even)	
C_{nh}	$E, C_{n'},, C_{n}^{n-1}, \sigma_{h}$	
S_{2n}	$E, S_{2n},, S_{2n}^{2n-1}$	
$C_{\infty v}$	<i>E</i> , C_{∞} , $\infty \sigma_v$ (noncentrosymmetric linear)	
	Dihedral Groups	
Symbo	ol Operations	$(n = 2, 3,, \infty)$
D_n	$E, C_n,, C_n^{n-1}, nC_2(\bot C_n)$	
D_{nd}	$E, C_n,, C_n^{n-1}, S_{2n},, S_{2n}^{2n-1}, nC_2(\perp C_n), n\sigma_d$	
D_{nh}	<i>E</i> , <i>C</i> _{<i>n</i>} ,, <i>C</i> _{<i>n</i>} ^{<i>n</i>-1} , <i>nC</i> ₂ ($\perp C_n$), σ_h , $n\sigma_v$	
$D_{{\scriptscriptstyle \infty} h}$	$E, C_{\infty}, S_{\infty}, \infty C_2(\bot C_{\infty}), \infty \sigma_v, i$ (centrosymmetric lin	ear)

Common Point Groups and Their Principal Operations

Common Point Groups and Their Principal Operations - Continued

T_d E, $4C_3$, $4C_3^2$, $3C_2$, $3S_2$	$S_4, 3S_4^3, 6\sigma_d$ (tetrahedron)
O_h E, $4C_3$, $4C_3^2$, $6C_2$, $3C_3^2$ (octahedron)	$C_4, 3C_4^3, 3C_2(=C_4^2), i, 3S_4, 3S_4^3, 4S_6, 4S_6^5, 3\sigma_h, 6\sigma_d$
	C_5^4 , $10C_3$, $10C_3^2$, $15C_2$, <i>i</i> , $6S_{10}^3$, $6S_{10}^3^7$, $6S_{10}^9^9$, $10S_6$, hedron, dodecahedron)

Cyclic Groups

A cyclic group of order *h* is generated by taking a single element *X* through all its powers to $X^{h} = E$.

$$G = \{X, X^2, \dots, X^h = E\}$$

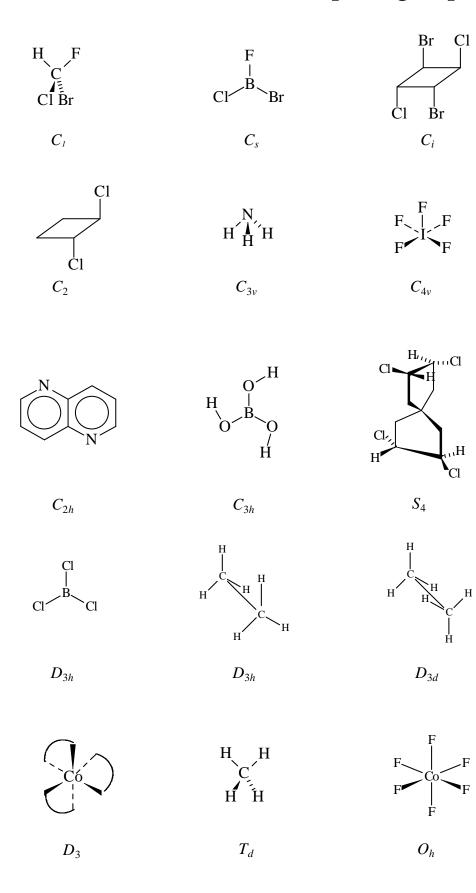
✓ All cyclic groups are Abelian.

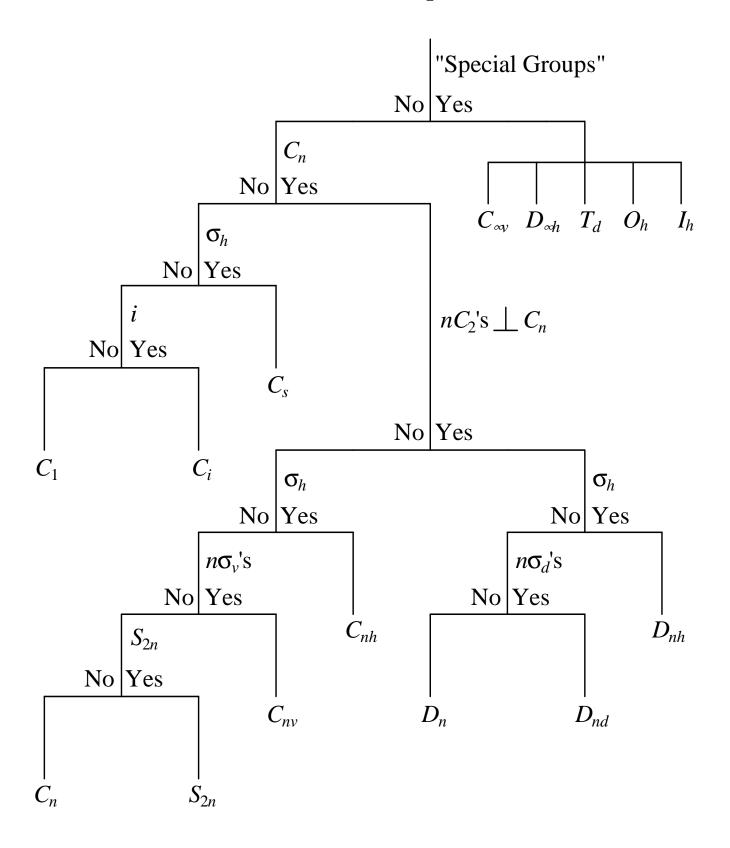
The C_n and S_{2n} groups are cyclic groups; e.g.,

 $C_4 = \{C_4, C_2, C_4^3, E\}$ $S_4 = \{S_4, C_2, S_4^3, E\}$

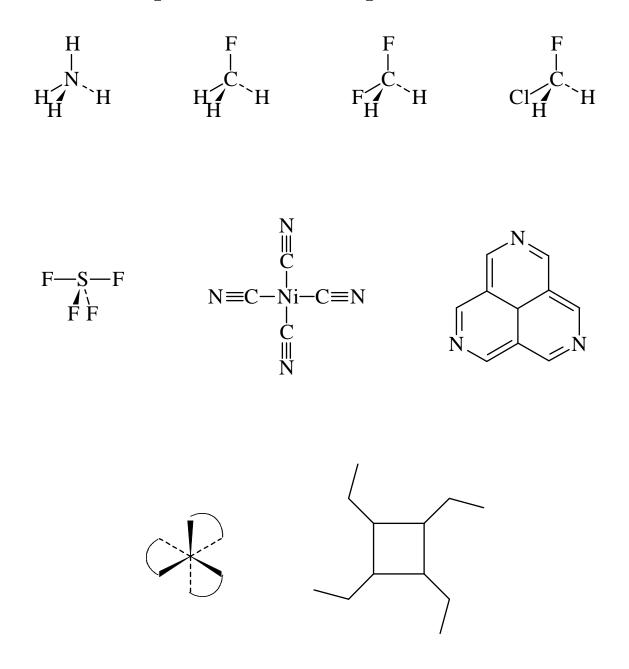
The multiplication tables of cyclic groups "scroll" from row to row and column to column; e.g.,

Examples of molecules with various point group symmetries

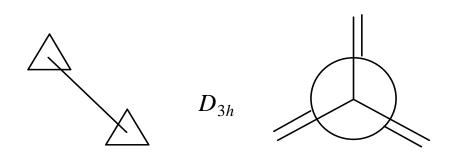




Examples for Point Group Classification

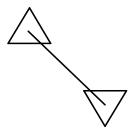


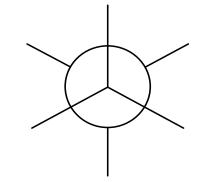
Representation of the Conformations of Ethane

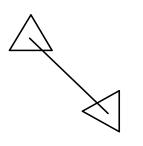


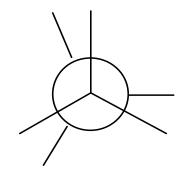
 D_{3d}

 D_3







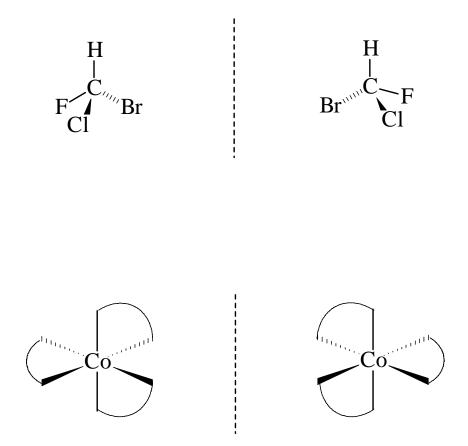


Optical Activity and Symmetry

- Chiral molecules can exist as enantiomers, which will rotate plane-polarized light in opposite directions.
- Solution Chiral molecules are **dissymmetric**, but not necessarily asymmetric (point group C_1).
 - ✓ Asymmetric molecules are just the least symmetric among all dissymetric molecules.
- Dissymptric molecules can have no other symmetry but proper rotations (C_n) .
- Chiral molecules belong to one of the following point groups:

 $C_1, C_n, D_n (T, O, I)$

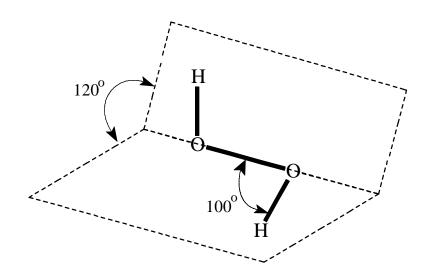
Enantiomers of Dissymetric Species



CHFClBr (point group C_1) is asymmetric, but $[Co(en)_3]^{3+}$ (point group D_3) is not.

Non-Chiral Dissymetric Molecules

Sometimes, theoretically possible enantiomeric pairs do not exist, due to stereochemical non-rigidity.



Structure of hydrogen peroxide (point group C_2)