Page 1 of 5

Name_____Key____

Chem 370 - Spring, 2019 Test II - Part 1 April 22, 2019

- 1. (30 points; 3 points each) Circle the correct answer to each of the following.
- a. Which one of the following aqueous solutions would be acidic?

 $Ba(NO_3)_2(aq)$ $KNO_3(aq)$ $Ca(NO_3)_2(aq)$ $Al(NO_3)_3(aq)$ $NaNO_3(aq)$

b. Which one of the following would have the lowest proton affinity, defined as the enthalpy of the reaction, $HA(g) \rightarrow H^+(g) + A^-(g)$, and therefore be inherently most acidic?

 H_2 PH_3 H_2S GeH_4 HBr

c. *On the basis of the solvent system concept*, which one of the following reactions would result in an *acidic* solution? **The first reactant is the solvent in each case.**

BrF₃ + NaF → Na⁺ + [BrF₄]⁻ ICl + PCl₅ → [PCl₄]⁺ + [ICl₂]⁻ CIF₃ + PtF₅ → [CIF₂⁺] + [PtF₆⁻] CIF₃ + NOF → [NO]⁺ + [CIF₄]⁻ ICl + NaCl → Na⁺ + [ICl₂]⁻

- d. Which one of the following acids is strongest in water?
 - H_3PO_4 HOCl HClO₃ H_3PO_2 H_2SO_3
- e. Which one of the following has the ground state configuration $(\sigma_{2s})^2 (\sigma_{2s}^*)^2 (\pi_{2p})^4 (\sigma_{2p})^2 (\pi_{2p}^*)^2 (\pi_{2p}^*$
 - **NO**⁻ C_2 C_2^{2-} N_2 NO^+
- f. Which one of the following has a double bond and is diamagnetic?
 - NO⁻ C₂ C₂²⁻ N₂ O₂²⁺

Name_____Key____

- g. Which of the following statements concerning close-packed structures is not true?
 - i. Cubic close-packed (ccp) and hexagonal close packed (hcp) have the maximum packing efficiency of 74.05%
 - ii. Both ccp and hcp structures have as many octahedral holes as they have tetrahedral holes.
 - iii. Both ccp and hcp structures have CN12 for every atom
 - iv. If r is the radius of the atoms comprising a close-packed structure, an interstitial atom whose radius is 0.35r would most probably occupy an octahedral hole, but not a tetrahedral hole.
 - v. A body-centered cubic structure of like atoms is not close-packed and results in a lower packing efficiency.
- h. The calcium fluoride (fluorite) structure is shown below, in which gray spheres represent Ca^{2+} ions, and black spheres represent F^- ions

How many CaF_2 formula units (Z) does the fluorite structure contain?

1

2 3 4 8

- Which one of the following best describes the structure of fluorite (shown above)?
 triclinic simple cubic body-centered cubic face-centered cubic rhombahedral
- j. Which one of the following ionic compounds has the *largest* lattice energy?

ScN NaF Na₂O ZnS CaO

Name____Key____

- 2. (16 points; 4 points each lettered part) Fill in the blanks with the correct answers.
- a. Give the electronic configuration in the form $t_{2g}{}^{n}e_{g}{}^{m}$ for the metal ion in each of the following ML₆ octahedral complexes, where M is a transition-metal ion and L is a unidentate ligand.

 d^7 high-spin $t_{2g}^5 e_g^2$ d^7 low-spin $t_{2g}^6 e_g^1$

b. Give the spin-only magnetic moments (B.M.) expected for octahedral complexes with metal ions having the following configurations.

 d^7 high-spin **3.87 B.M.** d^7 low-spin **1.73 B.M.**

- c. For the complexes described in parts a and b, give the expressions for the crystal (ligand) field stabilization energies (CFSE) in terms of Δ_0 and *P*.
 - d^7 high-spin $-0.8\Delta_0 + 2P$ d^7 low-spin $-1.8\Delta_0 + 3P$
- d. How many unpaired electrons would each of the following Co²⁺ complexes have?

 $[CoCl_4]^{2-}$ 3 $[Co(CN)_6]^{4-}$ 1

Name_____Key_____

3. (12 points) X-ray structure determination of crystalline $[Cr(NH_3)_6][CuCl_5]$ shows that the compounds consists of octahedral $[Cr(NH_3)_6]^{3+}$ cations (O_h) and trigonal bipyramidal $[CuCl_5]^{3-}$ anions $(D_{3h})^{.1}$

a. (3 points) Show the CFT splitting of the *d* orbitals on Cr^{3+} in the octahedral $[Cr(NH_3)_6]^{3+}$ cation. Label the levels by Mulliken symbol and specific *d* orbitals, and fill the scheme with the appropriate number of electrons, using up and down arrow notation, 1 \downarrow .

$$\underline{\qquad} e_g (d_{z^2}, d_{x^2-y^2})$$

$$\underline{\qquad} 1 \underline{\qquad} 1 \underline{\qquad} t_{2g} (d_{xz}, d_{yz}, d_{xy})$$

b. (7 points) With the aid of the attached D_{3h} character table, determine the CFT splitting scheme of the *d* orbitals on Cu²⁺ in the trigonal bipyramidal [CuCl₅]³⁻ anion. Label the levels by Mulliken symbol and specific *d* orbitals, and fill the scheme with the appropriate number of electrons, using up and down arrow notation, 1 \downarrow .

c. (2 points) Both ions in $[Cr(NH_3)_6][CuCl_5]$ are paramagnetic. What would be the predicted spin-only magnetic moment in Bohr magnetons for this compound? $\mu = (3.87 \text{ B.M.} + 1.73 \text{ B.M.})/2 = 2.80 \text{ B.M.}$

¹K. N. Raymond, D. W. Meek, and J. A. Ibers, *Inorg. Chem.*, **1968**, 1111.

Page	5	of	5

D_{3h}	E	$2C_3$	$3C_2$	σ_h	$2S_3$	$3\sigma_v$		
A_1'	1	1	1	1	1	1		$x^2 + y^2, z^2$
A_2 '	1	1	-1	1	1	-1	R_{z}	
<i>E</i> '	2	-1	0	2	-1	0	(<i>x</i> , <i>y</i>)	$(x^2 - y^2, xy)$
A_1 "	1	1	1	-1	-1	-1		
A_2 "	1	1	-1	-1	-1	1	z	
<i>E</i> "	2	-1	0	-2	1	0	(R_x, R_y)	(<i>xz</i> , <i>yz</i>)