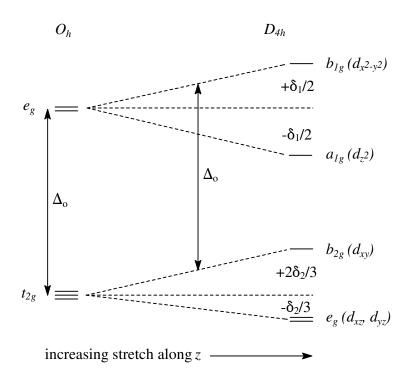
Name	Key	
ring 2018		

Chem 370 - Spring, 2018 Test II - Part 1 April 9, 2018

			April 9, 2018							
1. (30 points; 3 points each) Circle the correct answer to each of the following.										
a.	. Which one of the following aqueous solutions would be acidic?									
	$\mathbf{Be}(\mathbf{NO_3})_2(aq)$ $\mathbf{LiNO_3}(aq)$ $\mathbf{Sr}(\mathbf{NO_3})_2(aq)$ $\mathbf{Ba}(\mathbf{NO_3})_2$ (aq) $\mathbf{RbNO_3}(aq)$									
b.	. Among the following, which is likely to be the strongest Lewis base?									
	NCl ₃	NH_3	$N(CH_3)_3$	NF_3	NI_3					
c.	On the basis of the so in an acidic solution?	•	*	_	g reactions would re	sult				
	$BrF_3 + NaF \rightarrow Na^+ + [BrF_4]^-$									
	$BrF_3 + SnF_4 \rightarrow [BrF_2]^+ + [SnF_5]^-$									
	$CH_3OH + Na \rightarrow NaOCH_3 + \frac{1}{2}H_2$									
	$ClF_3 + NOF \rightarrow [NO]^+ + [ClF_4]^-$									
	$ICl + NaCl \rightarrow Na^+ + [ICl_2]^-$									
d.	Which one of the follo	owing acids or	bases would be	leveled in water?						
	H_3PO_4	HOCl	HClO ₂	Na ₂ O	NaOH					
e.	Which one of the follo	owing has the	lowest bond orde	er?						
	NO-	O_2	C_2^{2-}	N_2	$O_2^{\ 2-}$					
f.	If z is the internuclear atoms would be capab			-	•					


 $p_z \pm p_z$ $d_{xz} \pm d_{xz}$ $p_x \pm p_y$ $p_z \pm s$ $d_{z^2} \pm d_{xy}$

			Nam	e	Key				
g.	A certain crystal structure is found to have $a \neq b \neq c$; $\alpha = \gamma = 90^{\circ}$, $\beta \neq 90^{\circ}$ and has two lattice points per unit cell. Which one of the Bravais lattices describes this structure?								
	orthorhombic P	orthorl	nombic C	te	tetragonal I				
	mono	clinic <i>C</i>		monoclin	nic P				
h.	The most common zinc ore is zinc blende, a form of ZnS. The zinc blend structure is shown below.								
	How many ZnS formula	units (Z) does tl	he zinc blend	e structure o	contain?				
	1	2	3	4	8				
i.	Zinc blend can be described of the same type. Which	_	-	-					
	triclinic simple cubic	body-centere	d cubic face	-centered o	cubic rhomb	oahedral			
j.	Which one of the follow	ing ionic compo	ounds has the	<i>smallest</i> lat	tice energy?				
	ScN	CsI	ΜσΩ	ZnS	R	aF.			

				Name	Key	
2.	(16 points; 4 points	each lettered	d part) Fill in the	blanks with	the correct answers.	
a.					netal ion in each of the follown and L is a unidentate ligand	
	d ⁵ high-spin			d ⁵ low-spir	1	
	$t_{2g}^{3}e_g^{2}$			t_{2g}^{5}		
b.	Give the spin-only ions having the foll			spected for o	octahedral complexes with mo	etal
	d ⁵ high-spin			d ⁵ low-spir	n	
	5.92 B.M.			1.73 B.I	М.	
c.	For the complexes field stabilization e	-		-	ssions for the crystal (ligand)	
	d ⁵ high-spin			d ⁵ low-spir	1	
	CFSE = 0			CFSE = -2	$\Delta_0 + 2P$	
d.	How many unpaire	d electrons ar	re there in each o	of the follow	ving complexes?	
	$[Ti(H_2O)_6]^{3+}$	1				
	$[Fe(CN)_6]^{4-}$	0				
	$[Ni(CN)_4]^{2-}$	0				
	[NiCl ₄] ²⁻	2				

Name	Kev
INAIIIC	NCY

3. (12 points) Using the template below, show the effect on the energies of the d orbitals when an octahedral complex is stretched along the z axis, a tetragonal distortion resulting in a decent in symmetry from O_h to D_{4h} and a lifting of degeneracies among the t_{2g} and e_g levels. Label your diagram with the specific d orbitals and appropriate Mulliken symbols for each level in D_{4h} . Be sure to pay attention to the energy ordering of the new levels and the relative ascent and decent of each as the distortion increases. A D_{4h} character table is shown on the last page for your reference.

D_{4h}	E	$2C_{4}$	C_2	$2C_2'$	$2C_2''$	i	$2S_4$	σ_h	$2\sigma_v$	$2\sigma_d$		
A_{1g}	1	1	1	1	1	1	1	1	1	1	> .	$x^2 + y^2, z^2$
A_{2g}	1	1	1	-1	-1	1	1	1	-1	-1	R_z	
B_{1g}	1	-1	1	1	-1	1	-1	1	1	-1	_	$x^2 - y^2$
B_{2g}	1	-1	1	-1	1	1	-1	1	-1	1		xy
E_{g}	2	0	-2	0	0	2	0	-2	0	0	(R_x, R_y)	(xz, yz)
A_{1u}	1	1	1	1	1	-1	-1	-1	-1	-1		
A_{2u}	1	1	1	-1	-1	-1	-1	-1	1	1	z	ų.
B_{1u}	1	-1	1	1	-1	-1	1	-1	-1	1		
B_{2u}	1	-1	1	-1	1	-1	1	-1	1	-1		
E_u	2	0	-2	0	0	-2	0	2	0	0	(x, y)	