Name

Chem 370 - Spring, 2018 Test II - Part 1 April 9, 2018

- 1. (30 points; 3 points each) Circle the correct answer to each of the following.
- a. Which one of the following aqueous solutions would be acidic?

 $Be(NO_3)_2(aq)$ $LiNO_3(aq)$ $Sr(NO_3)_2(aq)$ $Ba(NO_3)_2(aq)$ $RbNO_3(aq)$

b. Among the following, which is likely to be the strongest Lewis base?

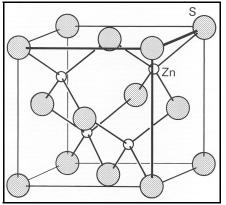
NCl₃ NH₃ N(CH₃)₃ NF₃ NI₃

c. *On the basis of the solvent system concept*, which one of the following reactions would result in an *acidic* solution? The first reactant is the solvent in each case.

 $BrF_{3} + NaF \rightarrow Na^{+} + [BrF_{4}]^{-}$ $BrF_{3} + SnF_{4} \rightarrow [BrF_{2}]^{+} + [SnF_{5}]^{-}$ $CH_{3}OH + Na \rightarrow NaOCH_{3} + \frac{1}{2} H_{2}$ $ClF_{3} + NOF \rightarrow [NO]^{+} + [ClF_{4}]^{-}$ $ICl + NaCl \rightarrow Na^{+} + [ICl_{2}]^{-}$

- d. Which one of the following acids or bases would be leveled in water?
 - H₃PO₄ HOCl HClO₂ Na₂O NaOH
- e. Which one of the following has the *lowest* bond order?
 - NO⁻ O_2 C_2^{2-} N_2 O_2^{2-}
- f. If z is the internuclear axis, which one of the following combinations of AOs on adjacent atoms would be capable of forming π and π^* MOs in a diatomic species?
 - $p_z \pm p_z$ $d_{xz} \pm d_{xz}$ $p_x \pm p_y$ $p_z \pm s$ $d_{z^2} \pm d_{xy}$

Name_____


g. A certain crystal structure is found to have $a \neq b \neq c$; $\alpha = \gamma = 90^{\circ}$, $\beta \neq 90^{\circ}$ and has two lattice points per unit cell. Which one of the Bravais lattices describes this structure?

orthorhombic P	orthorhombic C	tetragonal I
----------------	----------------	--------------

monoclinic C

monoclinic P

h. The most common zinc ore is zinc blende, a form of ZnS. The zinc blend structure is shown below.

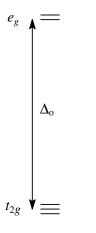
How many ZnS formula units (Z) does the zinc blende structure contain?

1 2 3 4 8

i. Zinc blend can be described as having inter-penetrating lattices of zinc and sulfide ions, both of the same type. Which one of the following best describes the structure of either lattice?

triclinic simple cubic body-centered cubic face-centered cubic rhombahedral

j. Which one of the following ionic compounds has the *smallest* lattice energy?


ScN CsI MgO ZnS BaF₂

		Name						
2.	(16 points; 4 points each lettered part) Fill in the blanks with the correct answers.							
a.	Give the electronic configuration in the form $t_{2g}{}^{n}e_{g}{}^{m}$ for the metal ion in each of the followin ML ₆ octahedral complexes, where M is a transition-metal ion and L is a unidentate ligand.							
	d ⁵ high-spin	d^5 low-spin						
b.	Give the spin-only magnet ions having the following	ic moments (B.M.) expected for octahedral complexes with metal configurations.						
	d ⁵ high-spin	d^5 low-spin						
	B.M.	B.M.						
c.	c. For the complexes described in parts a and b, give the expressions for the crysta field stabilization energies (CFSE) in terms of Δ_0 and <i>P</i> .							
	d^5 high-spin	d^5 low-spin						
	CFSE =	CFSE =						
d.	How many unpaired electr	ons are there in each of the following complexes?						
	[Ti(H ₂ O) ₆] ³⁺							
	[Fe(CN) ₆] ⁴⁻							
	[Ni(CN) ₄] ²⁻							
	[NiCl ₄] ²⁻							

Page 4 of 5

Name

3. (12 points) Using the template below, show the effect on the energies of the *d* orbitals when an octahedral complex is stretched along the *z* axis, a tetragonal distortion resulting in a decent in symmetry from O_h to D_{4h} and a lifting of degeneracies among the t_{2g} and e_g levels. Label your diagram with the specific *d* orbitals and appropriate Mulliken symbols for each level in D_{4h} . Be sure to pay attention to the energy ordering of the new levels and the relative ascent and decent of each as the distortion increases. A D_{4h} character table is shown on the last page for your reference.

increasing stretch along z \rightarrow

Page 5 of 5

D_{4h}	E	$2C_4$	C_2	2 <i>C</i> ₂ '	2 <i>C</i> ₂ "	i	$2S_4$	σ_h	$2\sigma_v$	$2\sigma_d$		
$\overline{A_{1g}}$	1	1	1	1	1	1	1	1	1	1		$x^2 + y^2, z$
A_{2g}	1	1	1	-1	-1	1	1	1	-1	-1	Rz	
B_{1g}	1	-1	1	1	-1	1	-1	1	1	-1		$x^2 - y^2$
B_{2g}	1	-1	1	-1	1	1	-1	1	-1	1		xy
E_{g}	2	0	-2	0	0	2	0	-2	0	0	(R_x, R_y)	(xz, yz)
A_{1u}	1	1	1	1	1	-1	-1	-1	-1	-1		
A_{2u}	1	1	1	-1	-1	-1	-1	-1	1	1	z	-
B_{1u}	1	-1	1	1	-1	-1	1	-1	-1	1		
B _{2u}	1	-1	1	-1	1	-1	1	-1	1	-1		
E_u	2	0	-2	0	0	-2	0	2	0	0	(x, y)	