Name	Vov
Name	Kev

Chem 370 - Spring, 20019 Test I March 8, 2019

1. (16 points) Fill in the symbols for the missing elements in the portion of the periodic table shown below.

						В	C	N
						Al	Si	P
Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As
Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb
Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi

- 2. (32 points; 4 points each part). Fill in the blanks.
- a. Name the shape of each of the following molecules, based on VSEPR considerations.

b. In terms of ligand close packing (LCP) theory, briefly explain why the C-F bond length in CF_4 (131.6 pm) is longer than that in CF_3^+ (124.7 pm).

The fluorine atoms are close packed and the F···F distance is virtually the same in both (215.5 pm). As a result of geometry, the tetrahedral geometry does not allow the F atoms to come as close to the central C as in a trigonal plane.

c. From your knowledge of the meanings of Mulliken symbols and principles derived from the Great Orthogonality Theorem, fill in the missing characters in the $C_{4\nu}$ character table shown below.

C_{4v}	\boldsymbol{E}	$2C_4$	C_2	$2\sigma_v$	$2\sigma_d$
A_1	1	1 1 -1 -1 0	1	1	1
A_2	1	1	1	-1	-1
$\boldsymbol{\mathit{B}}_{1}$	1	-1	1	1	-1
B_2	1	-1	1	-1	1
E	2	0	-2	0	0

Name	Key	
------	-----	--

d. The group D_3 consists of six operations (including E). Grouped by class, these are E, $2C_3$, $3C_2$. Other than C_1 , it has two subgroups; viz., the cyclic groups C_2 and C_3 . List all the operations of each subgroup and give its order (g). (Don't forget, every group has E.)

$$C_2$$
: __E, C_2 ____ $g = __2$ __

$$C_3$$
: _E, C_3 , C_3^2 ___ $g = _3_$

e. Among the following, circle the *two* whose infrared and Raman spectra would show completely different frequencies (i.e., mutual exclusion):

$$BF_3$$
 C_6H_6 CO_2 CH_4 H_2O

f. Circle the correct answer among each of the following choices.

The smallest F–C–F angle: CF_3^+ F_2CO CF_4 F_3CO^-

The smallest bond angle: OCl_2 **HOF** H_2O OF_2

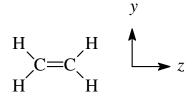
g. Give the valence configuration of each of the following:

$$_{26}$$
Fe $3d^64s^2$ $_{26}$ Fe³⁺ $3d^5$ $_{29}$ Cu $3d^{10}4s^1$ $_{29}$ Cu⁺ $3d^{10}$

h. With the aid of the D_{2h} character table shown on the last page, give the irreducible representations that would result from the following direct products:

$$A_g \times A_u = A_u \qquad B_{2u} \times B_{3u} = B_{1g}$$

Name_____

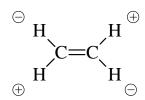

3. (20 points) Give the point group of each of the following.

$$\begin{bmatrix} F \\ F \\ F \end{bmatrix} = C_4$$

Name	Kev

4. (32 points) Consider ethylene, C_2H_4 , with the axis orientations shown below. (Feel free to make a model with your kit.)

Using the worksheet on the next page, determine the number of frequencies, their symmetries, and the infrared and Raman activities of the normal modes of ethylene. Identify any polarized Raman bands and the number of frequencies that should be coincident between the two spectra. A separate D_{2h} character table is shown on the final page of this test packet; feel free to remove it for your working convenience. Do not write anything on the character table that you want graded, and take it with you or dispose of it at the end of the test. Once you have completed all your work, summarize your results in the table below, giving the number of frequencies and their symmetry species.


Туре	Frequencies	Symmetry Species
Infrared	5	$2B_{1u} + 2B_{2u} + B_{3u}$
Raman	6	$3A_{1g} + B_{2g} + 2B_{3g}$
Polarized	3	$3A_{1g}$
Coincidences	0	_
Silent modes	1	A_{1u}

Name	Key
------	-----

D_{2h}	E	$C_2(z)$	$C_2(y)$	$C_2(x)$	i	$\sigma(xy)$	$\sigma(xz)$	$\sigma(yz)$	h = 8	
N_i	6	2	0	0	0	0	2	6		
χ_i	3	-1	-1	-1	-3	1	1	1		
Γ_{3n}	18	-2	0	0	0	0	2	6	Σ	Σ/h
A_{1g}	18	-2					2	6	24	3
\pmb{B}_{1g}	18	-2					-2	-6	8	1
B_{2g}	18	2					2	-6	16	2
B_{3g}	18	2					-2	6	24	3
A_{1u}	18	-2					-2	-6	8	1
B_{1u}	18	-2					2	6	24	3
B_{2u}	18	2					-2	6	24	3
B_{3u}	18	2					2	-6	16	2

$$\begin{split} \Gamma_{3n} &= 3A_{1g} + B_{1g} + 2B_{2g} + 3B_{3g} + A_{1u} + 3B_{1u} + 3B_{2u} + 2B_{3u} \\ \Gamma_{\text{trans}} &= B_{1u} + B_{2u} + B_{3u} \qquad \qquad \Gamma_{\text{rot}} = B_{1g} + B_{2g} + B_{3g} \\ \Gamma_{3n-6} &= 3A_{1g} + B_{2g} + 2B_{3g} + A_{1u} + 2B_{1u} + 2B_{2u} + B_{3u} \\ \text{R (pol)} \quad \text{R} \quad \text{R} \quad \text{ir} \quad \text{ir} \quad \text{ir} \end{split}$$

Bonus (4 points) One of the normal modes of ethylene is depicted below, where \oplus and \ominus indicate motion above and below the plane of the molecule, respectively. Give the Mulliken symbol for this mode, and indicate its infrared and Raman activity.

Mulliken symbol A_{1u}

i.r./Raman activity none (silent mode)