

Step 1: Count non-shifted atoms.

Step 2: Multiply by the contribution per non-shifted atom to generate Γ_{3n} .

D_{4h}	Ε	$2C_4$	C_2	$2C_{2}'$	$2C_2$ "	i	$2S_4$	σ_h	$2\sigma_v$	$2\sigma_d$
N_i	5	1	1	3	1	1	1	5	3	1
Xi	3	1	-1	-1	-1	-3	-1	1	1	1
Γ_{3n}	15	1	-1	-3	-1	-3	-1	5	3	1

Step 3: Reduce Γ_{3n}

D_{4h}	Ε	$2C_4$	C_2	$2C_{2}'$	$2C_2$ "	i	$2S_4$	σ_h	$2\sigma_v$	$2\sigma_d$		
N_i	5	1	1	3	1	1	1	5	3	1		
χ_i	3	1	-1	-1	-1	-3	-1	1	1	1		
Γ_{3n}	15	1	-1	-3	-1	-3	-1	5	3	1	Σ	Σ/16
A_{1g}	15	2	-1	-6	-2	-3	-2	5	6	2	16	1
A_{2g}	15	2	-1	6	2	-3	-2	5	-6	-2	16	1
B_{1g}	15	-2	-1	-6	2	-3	2	5	6	-2	16	1
B_{2g}	15	-2	-1	6	-2	-3	2	5	-6	2	16	1
E_{g}	30	0	2	0	0	-6	0	-10	0	0	16	1
A_{1u}	15	2	-1	-6	-2	3	2	-5	-6	-2	0	0
A_{2u}	15	2	-1	6	2	3	2	-5	6	2	32	2
B_{1u}	15	-2	-1	-6	2	3	-2	-5	-6	2	0	0
B_{2u}	15	-2	-1	6	-2	3	-2	-5	6	-2	16	1
E_u	30	0	2	0	0	6	0	10	0	0	48	3

$$\Gamma_{3n} = A_{1g} + A_{2g} + B_{1g} + B_{2g} + E_g + 2A_{2u} + B_{2u} + 3E_u$$

Step 4: Check that the sum of the dimensions of the found irreducible representations equals the dimension of the representation, 3n = 15.

$$d = 1 + 1 + 1 + 1 + 2 + (2)(1) + 1 + (3)(2) = 15$$

Step 5: Identify species of translations and rotations from vector transformation listings in the penultimate column of the character table.

$$\Gamma_{\text{trans}} = A_{2u} + E_u \qquad \Gamma_{\text{rot}} = A_{2g} + E_g$$

Step 6: Subtract translation and rotation species from Γ_{3n} to obtain Γ_{3n-6} , the species of the genuine normal modes of vibration.

$$\Gamma_{3n-6} = A_{1g} + B_{1g} + B_{2g} + A_{2u} + B_{2u} + 2E_u = 7 \text{ frequencies}$$

Step 7: Determine infrared activity from the unit vector transformation listings. Determine Raman activity from the direct product listings. Any species of Γ_{3n-6} that do not match either of these are silent modes.

Infrared	$3(A_{2u}+2E_u)$				
Raman	$3 (A_{1g} + B_{1g} + B_{2g})$				
Polarized	$1 (A_{1g})$				
Coincidences	0				
Silent modes	$1 (B_{2u})$				

Notes and questions about the results

- 1. Notice that no infrared active species are Raman active and vice versa. Why?
- 2. What does it mean in terms of the motions of the normal modes that all the infrared-active modes belong to *ungerade* species and all the Raman-active modes belong to *gerade* species.
- 3. Can you predict the motions of the normal modes on the basis of their symmetry designations (Mulliken symbols)?
- 4. How do the pairs of modes that comprise each of the two E_u frequencies differ from each other?
- 5. How does the pattern of infrared and Raman activity of a planar XY_4 molecule compare to a tetrahedral XY_4 molecule?

.

Normal Modes of Planar AX_4 -Type Molecules