Name

Chem 370 - Spring, 2019 Fifteen Minute Quiz No. 9

1. (3 points) In the table below, for octahedral complexes, indicate whether the ground state for the configuration is *A*, *E*, or *T*, and whether it would be subject to no, weak, or strong Jahn-Teller (J-T) distortion.

Configuration	<i>A</i> , <i>E</i> , or <i>T</i> ?	No, weak, or strong J-T?
$t_{2g}^{\ \ 6}e_{g}^{\ \ 1}$	E	strong
$t_{2g}^{5}e_{g}^{2}$	Т	weak
$t_{2g}^{6}e_{g}^{2}$	A	no

2. (1 point) From your recall of the Orgel diagrams, give the state-to-state notation for the samespin transition(s) expected for an octahedral d^6 high-spin complex. Be sure to add the spin multiplicity for the states.

Transition(s): ${}^{5}T_{2g} \rightarrow {}^{5}E_{g}$ (same diagram as d^{1})

3. (1 point) For the reaction, $[Pt(NH_3)_3CN]^+ + CN^- \rightarrow [Pt(NH_3)_2(CN)_2] + NH_3$, which isomer of $[Pt(NH_3)_2(CN)_2]$ would predominate, *cis* or *trans*?

Answer: *trans* (CN⁻ is a strong *trans*-directing ligand)