Name____Key____

Chem 370 - Spring, 2019 Fifteen Minute Quiz No. 8

(5 points) Three coordinated complexes (CN3) are not common, but examples can be found among all first-row and some second-row transition metals. One example that has been characterized¹ is the molybdenum(III) complex (d^3) Mo(NRAr)₃, where R = C(CD₃)₂CH₃ and Ar = 3,5-C₆H₃(CH₃)₂. As the structure below shows, the coordination about the central atom is trigonal planar (D_{3b}).

a. (4 points) With the aid of the D_{3h} character table on the last page, show the crystal field splitting and relative ordering of energies of the *d* orbitals of Mo³⁺ in a trigonal planar CN3 field. Label each level with both the Mulliken symbol (lower case) and specific *d* orbital(s). Show the filling of the three electrons for Mo³⁺. [Hints: Those orbitals entirely or partially in the *xy* plane will experience greater perturbation from the ligand field than those that are not in that plane. All CN3 complexes are expected to be high-spin.]

$$\underline{\qquad} e'(d_{x^2-y^2}, d_{xy})$$

$$\underline{\qquad} a_1'(d_{z^2})$$

$$\underline{\qquad} e''(d_{xz}, d_{yz})$$

b. (1 points) What is the value of the spin-only magnetic moment in Bohr magnetons for this complex?

$$\mu = \sqrt{3(3+2)}$$
 B.M. = 3.87 B.M.

¹C. E. Laplaza and C. C. Cummins, *Science*, 268, 861 (1995).

D_{3h}	E	$2C_{3}$	3 <i>C</i> ₂	σ_h	$2S_3$	$3\sigma_v$		
A_1'	1	1	1	1	1	1		$x^2 + y^2, z^2$
A_2 '	1	1	-1	1	1	-1	R_z	
<i>E</i> '	2	-1	0	2	-1	0	(<i>x</i> , <i>y</i>)	$(x^2 - y^2, xy)$
A_1 "	1	1	1	-1	-1	-1		
A_2 "	1	1	-1	-1	-1	1	z	
<i>E</i> "	2	-1	0	-2	1	0	(R_x, R_y)	(<i>xz</i> , <i>yz</i>)