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Error Analysis Using the Variance–Covariance Matrix
Carl Salter
Department of Chemistry, Moravian College, Bethlehem, PA  18018; csalter@cs.moravian.edu

Modern microcomputer software makes least-squares
(LS) fits quite tractable (1–5). An important task in any fit
is the propagation of error (6, 7) from the measurements into
the fit parameters. Harris showed how to use Solver in Excel
to perform a linear LS fit and implemented a jackknife
method for estimating the errors in the fit parameters (8).
Using Harris’s example and others requiring nonlinear least
squares, de Levie showed that an Excel macro could be used to
compute errors in the fit parameters obtained from Solver (9).
Zielinski and Allendoerfer reviewed the theory of nonlinear
LS and used Mathcad to analyze kinetics data, obtaining
estimates of rate constants and their errors (10). More gen-
erally, they noted that the errors in the LS parameters are
obtained from the diagonal elements of the “error matrix”,
which is the inverse of the curvature matrix for the sum-of-
squared errors (SSE) surface in parameter space.

But how is the error computed when the quantity of
interest is not a fit parameter, but some derived property such
as an extrapolated value of the function, or its x intercept,
or the area under the curve? Such quantities are computed
from two or more fit parameters and, because the parameters
from the fit are correlated, the usual propagation of error
equation does not apply. The errors in these derived quantities
from the fit must be computed from a more elaborate and
more general version of the error propagation equation that
includes terms involving the off-diagonal elements of the error
matrix. In a fit to a straight line there is one unique off-
diagonal element, and its size indicates the degree of correlation
between the slope and the y intercept. This element is commonly
called the covariance.

The x-intercept is a good example of a derived quantity
from a LS fit, and in two common chemistry experiments the
x-intercept of the fit line is the key quantity: the Charles’s law
determination of absolute zero from a pressure-vs-temperature
fit (11, 12), and the determination of an analyte concentration
by standard additions (13, 14 ). The x intercept is obtained
from the slope m and the y-intercept b as xint = �b/m; because
m and b are correlated, the covariance must be used to estimate
the error in xint. Bruce and Gill showed that neglecting covari-
ance in standard additions analyses can lead to an underestimated
standard error in the analyte concentration, and they noted that
one analytical textbook has an error equation that neglects
covariance (14 ). Meyer illustrated the effect of neglecting
covariance in extrapolating a linearized Clausius–Clapeyron
fit, showing that the usual propagation of error equation can
overestimate the error of extrapolation by more than an order
of magnitude (15). Note that in these two examples neglecting
covariance leads to opposite effects on the calculated error.

These two papers notwithstanding, the topic of covari-
ance in LS error analysis has largely fallen through the cracks.
Meyer notes that regression packages in spreadsheets do not
supply covariances, and this may be one reason why the topic

has received scant attention. But another may be the unfa-
miliarity of the general expression for propagated error in
functions of correlated variables, which takes on a particularly
simple form in matrix notation. This matrix equation for
propagated error cannot be found in the standard chemical
education references. The paper on nonlinear LS fitting by
Wentworth (16a), which follows almost exactly the analysis
of Deming (17 ), contains the correct formula for determining
error in derived quantities, but doesn’t write it as a matrix
equation. His follow-up paper gives only a simple error-band
example of the equation (16b). The second edition of Harris’s
Quantitative Chemical Analysis textbook also contains the for-
mula for the error in derived quantities of fits, but again not
as a matrix equation (18 ). The comprehensive treatment of
LS fitting in Experiments in Physical Chemistry fails to men-
tion errors in derived quantities (19). Boqué, Rius, and
Massart mentioned the problem of covariance briefly with
regard to straight line fits (4). Even Meyer avoids matrix
notation and doesn’t describe how to compute the needed
covariance term.

The purpose of this paper is to present the matrix
equation for propagated error, and in particular to show the
relationship between the variance–covariance matrix V and the
error matrix of ref 10. The use of V will be illustrated for
computing the errors of functions of LS parameters in the
commonly occurring case of a fit to a straight line, y = b + mx.
For this fit the covariance can easily be computed and added
to a spreadsheet regression. Since spreadsheets do provide for
matrix multiplication, V can be used to propagate error in
any function of the fit parameters.

The Variance–Covariance Matrix for the Linear LS Fit
to a Straight Line

A set of n ordered pairs of data (xi , yi) can be fitted to
the equation y = b + mx. Assuming that all the experimental
error is contained in the y values, minimizing the SSE in the
yi’s leads to the following matrix equation:

 n xiΣ
xiΣ xi

2Σ
b
m

=
yiΣ

xi yiΣ
        or   A      p =       y

where the summations are over the n data pairs. The equation
can be solved for the parameter vector p by inverting the matrix
A and multiplying on the left and right by the inverse,

  b
m

= p = A�1 y = 1
D

xi
2Σ � xiΣ

� xiΣ n
y

 D = det A = n xi
2Σ – xiΣ 2
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A�1 is equivalent to the error matrix discussed by Zielinski
and Allendoerfer for nonlinear fits (10), of which linear fits
are a special subset.

For any LS fit, the estimated fit variance s y
2 is SSE/υ,

where the number of degrees of freedom is υ = n – p and p is the
number of fit parameters. The fit variance is the key indicator
of the goodness of the fit. A good fit should have a variance
roughly equal to the variance of the y-measuring instrument
(if the assumption that y is the only source of error is correct).
For the simple case of a fit to slope and y intercept, the fit
variance is

 
sy

2 =
yi – mxi – b 2Σ

n – 2

and the variance–covariance matrix V is

  
V = sy

2A�1 =
sy

2

D

xi
2Σ � xiΣ

� xiΣ n
(1)

Equation 1 is equivalent to eq 41 of ref 16a. The diagonal
elements of V are the usual variances for the y intercept and
the slope: sb2 = V11 = sy2 Σx2/D, and sm2 = V22 = sy2n/D. The
covariance is the off-diagonal element V12 = V21 = �sy2 Σx/D.1

The covariance contains the sum of xi’s, a term not present
in sb2 or sm2. Notice that the covariance will be zero if the
mean of the xi’s is zero, which means that a suitable choice
of xi’s (experimental design) will produce a slope and y inter-
cept that are independent.

Errors in Functions of the Fit Parameters

If F is some function of the slope and y intercept F(b,m),
the variance in F can be computed from

sF
2 = dF

t VdF (2)

where

 
dF =

∂F
∂b
∂F
∂m

and dF
t is its transpose (a row vector). Note that in dF the

derivative with respect to the b always comes first because b
was taken to be the first parameter. Equation 2 is the matrix
equivalent of eq 43 in ref 16a, the latter being given in alge-
braic form for the specific case of three parameters. Equation
2 is the key equation in LS error analysis.

Since V = sy
2 A�1, it follows that sF

2 = sy
2dF

t A�1dF , which
shows that the variance in F depends on the curvature of the
SSE surface and on the overall quality of the fit.

Analytical Examples of the Use
of the Variance–Covariance Matrix

Let’s employ the formalism of eq 2 to obtain error
expressions for some derived quantities from a straight-
line fit.

Extrapolation and Interpolation y(x′)
The fit function can be used to estimate y for any value

of x (= x′). The function F in this case is the fit function
itself F = yext = b + mx′, and the derivative matrix is d t

yext
= (1 x′).

Using eq 2 the variance is

  
syext

2 = 1 x′ V 1
x′ =

sy
2

D
1 x′

xi
2Σ � xiΣ

� xiΣ n
1
x′ =

sy
2

D
nx′2 – 2x′ xiΣ + xi

2Σ
(3)

Equation 3 is the vertical error band equation. The
positive and negative square roots represent the range of ±1
standard deviation about the fit function. When the error
band is multiplied by an appropriate value from the Student’s
t table it becomes the confidence band. It is easy to show
that the minimum error occurs when x′ equals the mean of
the xi’s, and the band flares out at both ends beyond the
observed range of x.

Extrapolation and Interpolation x(y′)
The x value corresponding to a particular value y′ is given

by xext = (y′ – b)/m. The derivative matrix for this function is
d t

xext
 = (�1/m (b – y′)/m2). The variance of xext is

 
sx ext

2 =
sy

2

Dm2

n y′ – b 2

m2
+

2 b – y′
m xiΣ + xi

2Σ

Substituting into this expression the equation xext =
(y′ – b)/m leads to

 
sx ext

2 =
sy

2

Dm2
nxext

2 – 2xext xi +Σ xi
2Σ (4)

Equation 4, the horizontal error band equation, is remarkably
similar to eq 3. Once again, the variance is minimized when
xext is the mean of the xi’s. Equation 4 is obtained directly
from eq 2 when d t

xext
 is expressed as �1/m(1  xext).

A special case of eq 4 is the error in the x-intercept, where
y′ = 0. The function is xint = �b/m, and d t

xint
is �1/m(1 xint).

Inserting this derivative matrix into eq 2 yields

 
sx int

2 =
sy

2

Dm2
nx int

2 – 2x int xi +Σ xi
2Σ  (5)

Cast in slightly different form, this is eq 16 of ref 14, de-
rived from eq 13 of ref 14, which Bruce and Gill call the
“extrapolation method” of determining the error in the
analyte concentration by standard additions.

Calibration Error
Often a regression line is used as a calibration curve: y is

measured for an unknown sample so that x of the unknown
can be determined: xcc = ( ymeas – b)/m. The measurement of
y adds an additional source of error. The variance of xcc is
the sum of the variance derived from ymeas and the variance
from the LS fit:
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 sx cc

2 =
∂xcc

∂ymeas

2

symeas

2 + d cc
t Vd cc (6)

where d t
cc equals d t

xext
 given above. The derivative ∂xcc/∂ymeas

is 1/m; if the unknown is measured nunk times, then s 2
ymeas

 =
sy2/nunk . Substitution into eq 6 yields

 
sx cc

2 = 1
m

2 sy
2

nunk
+

sy
2

Dm2
nxcc

2 – 2xcc xi +Σ xi
2Σ (7)

 
sx cc

2 =
sy

2

m2

1
nunk

+ 1
D

nxcc
2 – 2xcc xi +Σ xi

2Σ (8)

Equation 8 might be called the “calibration curve” error
equation; it can be found in analytical chemistry (20) and
chemometrics (21) textbooks. The term sy2 appears twice: once
from the measurement(s) on the unknown and again from
the LS fit, because the fit variance should be the same as the
variance of the y-measuring instrument. The sensitivity of the
y-measuring instrument is the slope m; eq 8 indicates that a
more sensitive instrument should produce a smaller error in
the determination of x. The smallest variance for determining
x is observed for values of x centered in the range of the
calibration data. Good experimental design dictates that
the calibration curve be constructed in the region of the
unknown’s y value. No amount of signal-averaging on the
unknown sample can eliminate the error introduced by the
calibration fit, but of course more calibration points will
reduce this error.

As presented here the calibration curve error equation is
a variant of the horizontal error band. The confidence band
equation described by Burdge et al. (22) is an equivalent

expression based on the vertical error band equation (eq 3,
cast in different form, is contained in eq 1 of ref 22). Burdge
et al. show how this confidence band has been used by
IUPAC to define detection limits. It would be more straight-
forward to define detection limits using horizontal error
bands, but the difference is probably not significant.

Area (x1, x2)
The error of the definite integral of the fit line (the area

under the curve) demonstrates the generality of this method.
The area between the limits x1 and x2 is

A = b + mx dx = b x2 – x1 + m
2

x2
2 – x1

2

x1

x2

The derivative matrix is

dA
t = x2 – x1

x2
2 – x1

2

2

The variance of the area is

 
sA

2 =
sy

2

D
n
4

x2
2 – x1

2 2
– x2

2 – x1
2 x2 – x1 xi + x2 – x1

2 xi
2ΣΣ (9)

Spreadsheet Example: Standard Additions

Following example 1 in ref 14, we fit absorbance vs
standard concentration to y = b + mx and obtain the analyte
concentration as �xint = b/m. The fit and error analysis are
illustrated in the Excel spreadsheet in Figure 1. The standard
additions data and fit results are in columns A–C; V and the
error analysis are in columns D–H.

Figure 1. Excel spreadsheet demonstrating error propagation using the V matrix from a LS fit of data from example
1 of ref 14 for the method of standard additions. The LS fit is extrapolated to its x intercept (cell E18); V (cells D7:E8) is
used to estimate the error in the extrapolation (cell E19) following eq 2 with d t

x nt = (�1/m)(1 xint) in cells G7:G8. The
regression output was created by the Regression tool in the Analysis Tool-Pak of Excel; a small portion of the regres-
sion output was cut and pasted into the spreadsheet to complete the error analysis. Important numerical results are
outlined in dark boxes; 1-D matrices are in italics.
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concn A COVARIANCE and ERROR calculation Using V

0 0.240 sum of x's 55.5 is SUM(A5:A9)

5.55 0.437

11.10 0.621 covar -8.5E-07 is -E2*C26^2/B19

16.65 0.809

22.20 1.009 V matrix det mat

1.416E-05 -8.5E-07 -29.0576 is -1/B26

-8.505E-07 7.66E-08 203.656 is -E18/B26

V*det

-0.00058 is MMULT(D7:E8,G7:G8)

SUMMARY OUTPUT det mat 4.03E-05

-29.05759 203.656

Regression Statistics

Multiple R 0.999903

R Square 0.999806 variance 0.025199 is MMULT(D13:E13,F11:F12)

Adjusted R 0.999741

SE 0.004858 x-int -7.00869 unknown concn mg/L

# Obs 5 error 0.158742 7.01 +/- 0.51

conf lim 0.505118

 t(95%,3)= 3.182

Coefficient Stnd Error

Intercept 0.2412 0.003763 V(1,1) is C25^2

slope 0.034414 0.000277 V(2,2) is C26^2
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Excel’s Regression Tool produces a lot of output; only
the summary and a portion of the parameter statistics were
retained for the analysis. The x-intercept is computed using
�b/m in cell E18. Σx, needed for the covariance, is computed
in E2. The covariance is computed using �Σx sm2/n in cell
E4; V12 = V21 = E4. V is completed by adding V11 = sb2 and
V22 = sm2. The derivative matrix �1/m(1 xint) appears twice
in the spreadsheet: once as a column matrix (G7:G8) and
again as a row matrix (D13:E13). Because of the way matrix
multiplication is implemented in Excel, this duplication is
required. The column matrix at F11:F12 is the product of V
and the derivative column matrix; this intermediate result
must be stored on the spreadsheet. The derivative row matrix
and this intermediate are multiplied at E16 to yield the
variance. The standard error in cell E19 and the 95% con-
fidence limit in E20 are equal to those reported in ref 14
using the “extrapolation method”. However, the extrapolation
method does not explicitly contain the covariance, and its
use requires the additional calculation of Σy.

As Meyer points out, very often the error in a derived
quantity is computed disregarding the covariance. Ignoring
the covariance is equivalent to “zeroing-out” the off-diagonal
elements of V. This is easily done in the spreadsheet. Placing
zeros in cells E7 and D8 yields a standard error of 0.39—the
same error reported by Bruce and Gill using the incorrect
“algebraic method”, which, they point out, leaves out co-
variance. The matrix formalism makes the covariance explicit,
and the spreadsheet makes it easy to assess the effect of the
covariance on the error in any derived quantity.

Conclusion

When a linear regression has been performed using a
spreadsheet program, the covariance can be calculated using
�Σx sm2/n, where it is assumed that sm is available from the
program—the only additional overhead is the calculation of
Σx. V can then be assembled and used to propagate error.
The spreadsheet can be used as a template: any regression
output can be cut and pasted into the template to produce
the corresponding V, and the error in any derived quantity
can be computed by entering the appropriate derivative matrix.
The matrix formalism is also a powerful way to perform error
propagation on a hand-held calculator, many of which now
can perform matrix multiplication.

Though we examined only the simple case of fits to a
straight line, V exists for any LS fit, whether linear or non-
linear, and the relationship between V and the error matrix
is always the same. All unweighted linear LS fits start with
the creation of a matrix A, which depends only on the x
quantities of the data. A�1 is the error matrix, and V = sy2 A�1.
Nonlinear fits must converge to the error matrix, but once
convergence is achieved V is again just the error matrix times
sy2. (Using the notation in ref 10, V = σ 2ε.) In either case, all
errors associated with the fit are contained in V and can be
extracted by application of eq 2.

For linear or nonlinear fits performed using Solver, de
Levie’s Excel macro can be used to produce the V matrix (9).
The macro estimates the elements of the error matrix numeri-
cally; although it does not ordinarily print out the off-diagonal
elements, the addition of a few lines of code will produce
the required off-diagonal elements of the V matrix. A test of

this macro using the standard additions data produced the
same covariance term.

The variance–covariance matrix is central to error
propagation. It connects traditional error propagation
among independent variables with errors in fit parameters,
because it contains both operations as special cases. The
standard propagation of error theorem can be considered a
special case of eq 2 in which V is diagonal. Errors in fit
parameters can be extracted from V using “trivial” derivative
matrices. For example, the “slope function” is F = m; its
derivative matrix (0 1) will extract the variance in the slope.
V and eq 2 demonstrate their greatest utility when they are
used to generate errors in derived quantities from LS fits. This
formalism can handle quite complicated tasks in error analysis
in straightforward fashion; for example, Tellinghuisen has
demonstrated a sophisticated use of eq 2 to determine the
errors in a potential energy curve derived from LS fits of
spectral data (23).

In some applications the jackknife or other bootstrapping
methods may be useful alternatives to the matrix formalism.
Though Harris demonstrated the jackknife only on a linear
LS fit (8), the method is readily extended to nonlinear fits as
well, and could be used to estimate the error in derived quan-
tities of a fit. The reliability of the jackknife in estimating
errors in nonlinear LS fits is an open question.

Utility aside, is there any general pedagogical value in
learning about the variance–covariance matrix—is there any
other topic where these methods and ideas may overlap? Yes.
The Schrödinger equation is a recipe for the wave function
of a system, and with the appropriate differential operator
one can extract information about the system from the wave
function. We usually say that the wave function contains all the
information we can ever have about the system. Equation 1
is a recipe for V, and eq 2 shows that one can extract in-
formation about errors in the LS fit from V. The variance–
covariance matrix contains all the error information we can
ever have about the LS fit. In this matrix formalism of error
propagation there lies an eerie analogy to quantum mechanics,
which is after all a statistical model of Nature.
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Note

1. Meyer calls the covariance σmb; Bruce and Gill call it smb.
In Bruce and Gill’s notation the covariance equals �  x̄ s y

2/Sxx , which
is a recasting of the expression for V12. Since the covariance is
dimensionally the same as the variance, the notation σ 

2
mb or s 2

mb

would be preferable; however, many authors shun the “square”
notation because they fear it would lead readers to believe that the
covariance can never be negative.
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