

Qualitative Organic Analysis – CH 351

Separation - Chromatography

Bela Torok Department of Chemistry University of Massachusetts Boston Boston, MA

Basic experiment in chromatography

MP – mobile phase SP – stationary phase

The principle of analysis by chromatography

The chromatogram

(a) Retention time (b) t_{R} (b) t_{R} (c) t_{R} (c) t_{R} Time

(c) Normal Gaussian curve characteristics

20

30

Gaussian curve with $\mu = 20$ and $\sigma = 1$.

10

0.4

the area between -2 and +2 accounts for 95.4% of the total area under the curve and bordered by the X axis

retention factor

 $k'_{\rm A} = t_{\rm R} - t_{\rm M} / t_{\rm M}$

The chromatogram

The Plate Theory

Figure 1.5 Schematic of a column cross-section.

The columr

If the length of the column is L, then the HETP is

HETP =
$$L/N$$
 $N = \frac{5.55 t_R^2}{w_{1/2}^2}$

The number of theoretical plates that a real column possesses can be found by examining a chromatographic peak after elution; where $w_{1/2}$ is the peak width at half-height.

Nernst partition coefficient (K)

 $K = \frac{C_s}{C_M} = \frac{\text{Molar concentration of the solute in the stationary phase}}{\text{Molar concentration of the solute in the mobile phase}}$

<u>Column Efficiency – Resolution Factor</u>

$$R = \frac{2[(t_{R})_{B} - (t_{R})_{A}]}{W_{A} + W_{B}}$$

How to improve:

- mobile phase composition
- column temperature
- stationary phase
- special chemical effects

Optimization of Chromatographic Analysis

Classification of Chromatographic Techniques

Liquid phase Chromatography (LC)

- Liquid/Solid (or adsorption)
- Ion (IC)
- Size exclusion (SEC)
- Liquid/Liquid (or partition) (LLC)
- Liquid/bound phase

Gas phase Chromatography (GC)

- Gas/Liquid (GLC)
- Gas/Solid (GSC)

Supercritical Fluid Chromatography (SFC)

- Gas/Liquid (GLC)
- Gas/Solid (GSC)

Principle of TLC

Deposition of the sample

Developing the plate

Identifying the spots

Two dimensional TLC

Characteristics of TLC

- a three phase system
- only partial equilibrium (S/L or L/G)
- adsorption on the stationary phase is reduced (different R_f in pure or mixture forms!)
- -flow rate cannot be modified
- the migration of the solvent is not constant

Quantitative TLC

Distance run by the solute Distance run by the solvent front X $R_i =$ - X_0

Plate type RP-18 UV detection at 254 nm Eluting phase: acetone/water 50: 50 v/v Climb: 20 min for 8 cm.

1 - Cortexone, $R_1 = H$ and $R_2 = H$ 2 - Corticosterone, R1 = OH and R2 = H

3 - Cortisone, B. = O and B. = OH

TLC as preHPLC

TLC Prep-Screen C18 Econo-Prep HPLC CHROM CHROM 7067 7065 3 Mobile phase: Methanol : Water (70:30) $\mathbf{2}$ 3 1. 1. Progesterone 2. Testosterone $\mathbf{2}$ HOH 1 3. Hydrocortisone

Components of a GC

"or with cryogenic device from -80°C

Carrier gas

H₂, N₂, He, Ar, CO₂

Detector !

Sample introduction

Direct vaporization injector

Sample introduction

Split-splitless injector

The split / splitless injector

Programmed Temp. Vaporization Inj.

<u>Oven</u>

Columns

Packed

Capillary

"530 µm" Columns

Polyimide coating

Silica glass

- d_C. Column internal diameter
- d_h Film thickness
- Stationary phase

Stationary Phases

Polysiloxanes

and numerous other pha with diverse chains (CH₂)₃-CN or C₂H₄-CF₃...

Alumina, silica, metal oxides etc.

ex. H_1 and H_2 = Ph m = 95% and n = 5%

Stationary Phases

Chiral stationary phases

Detectors

TCD (thermal conductivity detector)

Detectors

FID (flame ionization detector) + NPD

Detectors

ECD (electron capture detector) + PID (photo ionization detector)

Detectors

Detector	Туре	Support gases	Selectivity	Detectability	Dynamic range
Flame ionization (FID)	Mass flow	Hydrogen and air	Most organic cpds.	100 pg	107
Thermal conductivity (TCD)	Concentration	Reference	Universal	1 ng	107
Electron capture (ECD)	Concentration	Make-up	Halides, nitrates, nitriles, peroxides, anhydrides, organometallics	50 fg	105
Nitrogen-phosphorus	Mass flow	Hydrogen and air	Nitrogen, phosphorus	10 pg	106
Flame photometric (FPD)	Mass flow	Hydrogen and air possibly oxygen	Sulphur, phosphorus, tin, boron, arsenic, germanium, selenium, chromium	100 pg	10 ³
Photo-ionization (PID)	Concentration	Make-up	Aliphatics, aromatics, ketones, esters, aldehydes, amines, heterocyclics, organosulphurs, some organometallics	2 pg	107
Hall electrolytic conductivity	Mass flow	Hydrogen, oxygen	Halide, nitrogen, nitrosamine, sulphur		

Kovats' index

$$I_{s} = 100n + 100 \frac{\log t'_{R(N)} - \log t'_{R(n)}}{\log t'_{R(n+1)} - \log t'_{R(n)}} [0, 1]$$

General Concept of HPLC

Pumps

Pumps

Columns

$$\begin{split} \text{SiO}_2 + \text{NaOH} &\longrightarrow \text{Na}_2\text{SiO}_3 + \text{H}_2\text{O} \\ \text{Na}_2\text{SiO}_3 \xrightarrow{\text{H}_3\text{O}^4} [\text{Si(OH)}_4] \xrightarrow{-\text{H}_2\text{O}} [(\text{HO})_3\text{SiOSi(OH)}_3] \xrightarrow{-\hat{nH}_2\text{O}} (\text{SiO}_2)_{\kappa} \cdot (\text{H}_2\text{O})_{\kappa} \\ \xrightarrow{\text{orthosilicic acid2}} \xrightarrow{\text{orthosilicic acid2}} (\text{SiO}_2)_{\kappa} \cdot (\text{H}_2\text{O})_{\kappa} \\ \xrightarrow{\text{SiO}_3} \xrightarrow{\text{H}_3\text{O}^4} (\text{SiO}_2)_{\kappa} \cdot (\text{H}_2\text{O})_{\kappa} \\ \xrightarrow{\text{SiO}_3} \xrightarrow{\text{O}_3\text{O}_3} \xrightarrow{\text{O}_3\text{O}_3} (\text{SiO}_2)_{\kappa} \cdot (\text{H}_2\text{O})_{\kappa} \\ \xrightarrow{\text{SiO}_3} \xrightarrow{\text{O}_3\text{O}_3} \xrightarrow{\text{O}_3} \xrightarrow{\text{O}_3$$

optical purity (e.e.%) =
$$100 \frac{|A_{\rm R} - A_{\rm S}|}{A_{\rm R} + A_{\rm S}}$$

Mobile Phases

Mobile Phases

Detectors

Spectrophotometric detectors

Detectors

Spectrophotometric detectors

Detectors

Fluorescence detectors

Refractive Index detectors

Chromatography – References

- F. Rouessac, A. Rouessac; Chemical Analysis, Wiley, 2007