
Introduction to Measurement 
Chem 313 

 
Accuracy and Precision 
 
This course is all about measurement. We will be performing some classic assays to 
measure the concentrations of all kinds of analytes by various techniques. Every assay 
can be characterized by its accuracy and its precision. To explain fully the difference 
between accuracy and precision, let’s use the following example.   
 
A colorimetric assay is used to measure the concentration of Co2+

 in treated wastewater 
effluent being released into a local stream. Twenty samples are obtained and measured 
using the assay. The reported [Co2+] is the mean of the 20 measurements. Accuracy is a 
measure of how close this mean is to the true value. In practice, one would confirm the 
accuracy of an assay by either measuring a sample with a known concentration or 
analyzing the sample with a previously established assay. Accuracy can most often be 
improved by using careful calibration procedures. For example, we often construct 
standard curves for colorimetric assays. When we do this, we are in essence calibrating 
our method so that we can obtain accurate results. Once the assay is designed and a 
calibration mechanism is in place, our attention turns to precision. 
 
Standard Deviation 
 
The precision of our colorimetric assay is a measure of variability among the 20 
measurements. It is standard practice to use standard deviation (s) as a measure of this 
variability. 
 

s = ({Σ[(xi-m)2]}/n)1/2 
n = number of measurements, 20 

xi = each of the measurements, the 20 [Co2+] 
m = mean of the measurements 

 
Essentially, this is a measure of the average absolute deviation. The difference is squared 
so that negative and positive differences don not cancel each other out in the calculation. 
We will spend most of our efforts in this class on using the concept of standard deviation 
to report the precision of our measurements. 
 
As it turns out, the standard deviation can be manipulated to provide us with very specific 
probability measurements of the value of the true mean. The true mean should not be 
confused with the actual value. The actual value, as defined above in our example, is the 
real concentration of [Co2+] in the wastewater. The true mean, μ, is the average of an 
infinite number of measurements. The difference between the true mean and the actual 
value depends on the accuracy of the assay.  In designing the assay the goal is to 
minimize this difference. In performing the assay the goal is to estimate the true mean by 



taking a few measurements (because taking an infinite number of measurements would 
take too long). 
 
Normal (Gaussian) Distributions 
 
If we could take an infinite number of measurements, we could prepare a frequency 
graph, which plots the number of measurements that fall within various intervals.  This 
would result in a Normal distribution. This distribution is very unique and can be 
mathematically formulated. There are special qualities inherent to any Normal 
distribution.  A Normal distribution can be completely characterized by its mean, μ, and 
standard deviation, σ.  The Greek letter, σ, is used to indicate it is the true standard 
deviation of an infinite distribution.  The mean, μ, is given by the maximum of the 
Normal distribution, and μ ± σ defines the range in which 2/3 or 66.7 % of the 
measurements fall within. 
 
By making a finite number of measurements we can estimate both μ and σ. The mean of 
the finite number of measurements is an estimate of μ. Below we will discuss how we 
can quantify the accuracy of this estimate. σ can be estimated using the following 
equation for se, the estimate of the standard deviation. 
 

se = ({Σ[(xi-m)2]}/(n-1))1/2 
 
Student’s t test 
 
It is useful to be able to state with a meaningful degree of confidence how sure we are 
that the true mean, μ, falls within a given range.  To do this we use the t-table in 
conjunction with the following equation. 
 

μ = ± t·se/n1/2 or ± t·sm 
 
The variable t is obtained from the Student’s t-table (Table 4-2 in your textbook), se/n1/2

 is 
the standard error of the mean, sm.  You must first calculate the degrees of freedom 
appropriate for your given statistical analysis, and then decide the appropriate level of 
confidence you want to report.  For simple analyses the degrees of freedom (df) is n-1. 
You loose one degree of freedom when you calculate the mean. For some situations, such 
as least squares regressions, n-2, is appropriate. 
 
For example, if ten measurements were performed giving a mean, m, of 2.32 and an 
estimate of the standard deviation, se, of 0.64, we determine that the degrees of freedom 
is 9 (n-1) and t95%CL is 2.262 (read from Table 4-2). We calculate. 
 

2.32 = ± (2.262)⋅(0.64)/(101/2) = 0.46 
 



Thus, we are roughly 95 % certain that the true mean is somewhere in the range of 
2.32±0.46 (or somewhere between 1.86-2.78). 
 
 
Let’s add a word on the basis of the student t-test.  In fact, as you will soon find out, this 
is part of the focus of the first experiment.  If we were to take an infinite number of 
measurements and divide them into groups of ten. We could calculate the mean and 
estimate of the standard deviation, and the estimate of the standard deviation of the mean, 
sm, for each group of ten. We could also calculate the true mean. We could then calculate 
a t value for each group of ten using the following equation, 
 

tcalc = (μ-m)/sm 
 
where μ is the true mean, m is the mean for a given set of ten, and sm(ave) is the average 
estimate of the standard deviation of the mean among the sets of ten (in other words, for 
each set of ten, an sm can be calculated and then the average sm can be calculated). So 
now we have a long list (in fact an infinite list) of tcalc values. We could construct a 
frequency plot of these tcalc values, similar to the Normal distribution described above. 
 
This plot technically is not a Normal distribution, but it does have properties that are very 
specific to any group of t values that were derived from sets of ten, df =9.  There is a 
maximum at t = 0, and the curve gradually approaches a frequency of zero at each of the 
sides under the curve.  It can be shown mathematically that 95 % of the area under this 
curve falls within -2.262 to 2.262.  This means that for any set of ten measurements there 
is a 95 % chance that the corresponding tcalc falls within this range. The corollary to this is 
that for any set of ten measurements, there is a 95 % chance that the true mean falls 
within ± tcalcsm.  Now that is truly a powerful statement.  The t-distribution described 
above is unique for df = 9.  There are different distributions that correspond to different 
degrees of freedom.  The values for t listed in the t-table (Table 4-2 in your textbook) 
derive from these t-distribution plots at various degrees of freedom. 
 
In our first experiment we will have a collection of 10000 numbers acquired from 
summing the result of tossing five dice 10000 times (a feat performed by Excel).  You 
will divide the entries into 1000 sets of ten and calculate the m, se, sm and tcalc for each of 
the 1000 sets. You will determine the percentage of these sets that have tcalc values that lie 
outside the range of 2.262 and -2.262 and compare it to the expected 5%. 
 
It is hoped that your experience with this experiment will help you to appreciate why you 
can definitively say something about your confidence in estimating the true mean from 
making a finite number of measurements. 
 
 
 
 
 
 



Linear Least Squares Regression Analysis 
 
One of the foundations of science is the ability to describe mathematical relationship 
between variables. To accomplish this we usually seek to control one of the variables (the 
independent variable) and measure the other variable (the dependent variable) and 
determine whether there is a statistically meaningful correlation between the two 
variables. (I will come back to the issue of correlation shortly). If it becomes evident that 
there is a correlation, we often seek to define the mathematical relationship between the 
independent and dependent variables. Often the relationship is either linear or can be 
linearized, such that a plot involving the some function of the dependent variable on the 
y-axis and the independent variable on the x-axis shows a linear relationship. We use a 
procedure called Least Squares Regression Analysis (LSRA) to define the slope and 
intercept of this linear relationship and, as we shall see, the uncertainties associated with 
interpolating such plots. LSRA calculates the slope and intercept of a line that minimizes 
the sum of the squares of the deviations between the measured y values, yi, and the y 
value from the regression line. 
 
For instance, for the following set of data. 

x Y 
1 0.168
2 0.254
3 0.524
4 0.556
5 0.821

    
Regression Statistics   

R 0.976381
R2 0.95332
Standard Error (sy) 0.064964
Intercept (b) -0.0178
Slope (m) 0.1608

 
Here xi and yi are the pairs of x and y data, where xi is the independent variable, yi is the 
dependent variable, and y’s are the y values calculated from the best fit line drawn 
through the points. LSRA determines the line that can be drawn though the points that 
minimizes the sum of the square deviates. Using some calculus, one can obtain equations 
for the slope (m), intercept (b), and the errors in the slope (sm) and intercept (sb), the 
standard error of regression (sy), the correlation coefficient (R), and others. These 
equations can be found in Chapter 5 of the Harris. You will not need to manually solve 
any of these equations because we can use Excel to calculate them for us. There will be 
more on this later. 
 
The correlation coefficient (R) is a value between 0 and 1 for a plot with a positive slope 
or 0 and -1 for a plot with a negative slope.  For a positive (negative) slope the closer R is 
to 1 (-1) the stronger the correlation. The correlation coefficient of zero suggests that 
there is no correlation at all. Correlation coefficients are often provided along with a 



slope and intercept as a way of characterizing the goodness of fit. However, this is often a 
misuse of R.  R is most useful when you want to show to what extent the variance of one 
variable is coupled to the variance in the other variable. The coefficient of determination, 
R2, is very useful in this regard.  For instance in Experiment 2 we will prepare a plot of 
the masses of the pennies as a function of the year in which they were minted. Let’s say 
we find that this plot has an R of 0.82 (R2

 = 0.67). This suggests the 67 % of the variation 
in the masses of the pennies is coupled to the differences in the years they were minted, 
and 33 % of the variance comes from some other factors, such as, for instance, maybe the 
number of times a given coin exchanged owners.  However, using a correlation 
coefficient to characterize a Beer’s law plot (see below) is a little pointless because the 
Beer’s law relationship has already been established over and over again and we already 
know that essentially all of the variability in the absorbance values is coupled to the 
variations in concentration.  A better indicator of the quality of a calibration plot (see 
below) is the standard error of regression, sy. sy is essentially a measure of the average 
deviation of the measured y values and the y values given by the LSRA best fit line. 
 

sy
 = {sum of square deviates/(n-2)}1/2 

 
Calibration Plots 
 
Often we will use LSRA to define a calibration curve that is used for quantitative analysis.  
For instance, the typical spectroscopic experiment works like this. A series of standards is 
prepared of known concentrations.  Absorbances for each of the standard solutions are 
measured using a spectrometer.  These absorbances are plotted as a function 
of concentration.  A plot of absorbance vs. concentration is known as a Beer’s law plot. 
Beer’s law states that for a monochromatic beam of light (for practical purposes, light of 
a single wavelength) passing through a sample of thickness b, the absorbance of the 
radiation is given by 
 

A = εbc 
 
Where c is the concentration of the absorbing analyte and ε is the molar absorptivity. 
The molar absorptivity is dependent on the analyte, the solvent, and the wavelength of 
light. Thus, there is a linear relationship between A and c. If we plot A on the y-axis as a 
function of c, on the x-axis, we can perform a LSRA to find the slope and intercept. The 
intercept should be close to zero and the slope is εb. Generally we would also prepare and 
measure the absorbance of some sample which we are interested of learning the 
concentration of (the unknown), and we use our calibration (Beer’s law) plot to find the 
concentration of the analyte in the unknown. We then use the slope and intercept from the 
LSRA and the measured absorbance of the unknown to calculate cunk. Well, this is fairly 
straightforward and simple, but how do we express the statistical error in this cunk. 
The equation for the uncertainty in cunk is the equation for sx given on page 87 of your 
Harris textbook. 
 



One of the experiments we will be performing is a standard addition analysis, which is a 
modified standard curve analysis that accounts for any matrix effects in the unknown that 
may skew an analysis based on a plain vanilla-type standard curve analysis. We will 
discuss the standard addition plot in greater detail when we perform the experiment. 
For now, it is sufficient to state that cunk is given by the negative of they x-intercept in a 
standard additions plot. The uncertainty in the x-intercept can be calculated using the 
equation at the bottom of page 89. 
 
Error Extrapolation 
 
Often the value we want to report is not the same as the value we obtain for an unknown 
from LSRA. For instance, we may dilute an unknown substantially prior to measuring it 
with a spectrometer. There are always some errors that arise in the preparation of the 
unknown. These errors are directly related to the tolerances in the pipets, volumetric 
cylinders, burets, graduated cylinders, ect. The idea is to propagate these errors based on 
the equation used to calculate the final value that is being reported. The rules for 
propagating errors are given in Harris on pg 56, Table 3.1 and below.  
 
Addition and Subtraction 

a + b + c = d    a – b – c = d 
sd = (sa

2 + sb
2 + sc

2)1/2 
 
Multiplication and Division 

a⋅b/c = d 
sd/d = [(sa/a)2 + (sb/b)2 + (sc/c)2)1/2 ] 

 
Exponents 

y = xa 
sy/y = a⋅sx/x 

 
logs 

y = ln x 
sy = sx/x 

y = ex 
sy/y = sx 

 
 
 
An example: How many mg of quinine are in a 2-L bottle of tonic water? 
 



A 10.00 mL aliquot of tonic water is added to a 500.00 mL volumetric cylinder and 
diluted to the mark. A of this diluted solution was analyzed by fluorescence. Using 
a calibration curve of Fluorescenve vs. concentration produced from standard solutions 
prepared from pure quinine sulfate, the concentration of quinine in the 50 μL aliquot was 
found to be 1.54±0.12 mM. 
 
First let’s calculate the mg quinine in the 2-L bottle of tonic water. The concentration of 
the diluted solution in the 500.00 mL volumetric is 15.4±1.2 μM. The sample was diluted 
by a factor of 50.00 (500.00/10.00). The molecular weight of quinine is 324.417 g/mol. 
So, (15.4 μmol/L)⋅(500.00/10.00)⋅(2 L)⋅(324.417 μg/μmol)⋅(1 mg/1000μg) = 0.4996 mg 
The only quantities that have uncertainties associated with them besides the concentration 
of the diluted sample are the 10.00 mL from the pipet and the 500.00 mL from the 
volumetric flask.  The typical tolerance of a 10 mL pipet is ±0.02 mL (Table 2-4) and the 
typical tolerance of a 500.00 mL volumetric is ±0.2 mL (Table 2-10). For our burets it is 
±0.05 mL (Table 2-2). 
 
We can reduce the above equation to 
 

X = Constant⋅[(a±sa)⋅(b±sb)/(c±sc)] and the rule of 
multiplication and division is appropriate. 

 
mg quinine = 

(2⋅324.417/1000)⋅[(15.4±1.2)⋅(500.00±0.2)/(50.00±0.05)] 
 

(sX/X)2  = (sa/a)2 + (sb/b)2 + (sc/c)2 
= (1.2/15.4)2 + (0.2/500)2 + (0.05/50.00)2 
= 0.006073 

sX  = X (0.006073)1/2 = 0.03893 mg 
 

And the mg quinine in a 2L bottle is reported as 0.500±0.039 mg. Some text will tell you 
that you should only keep one significant figure in the error. So, you would report it as 
0.50±0.04 mg, others will tell you to follow different rules. If you always keep two sig. 
figs. in the error, you will stay out of trouble. 
 
Sometimes you will be faced with a problem, such as 
 

X = Constant⋅[{(a±sa) - (b±sb)} / (c±sc)] 
 
 
 
In this case you must break the propagation of errors into steps. 
 



d±sd = {(a±sa) - (b±sb)}, use the add/sub rule 
sd = (sa

2 + sb
2)1/2 

then, 
 
X = Constant⋅[(d±sd) / (c±sc)], now apply the mult/div rule 

sx = X [(sd/d)2 + (sc/c)2]1/2 
 
Conclusion 
 
Well, that is most of what you will need to get you through the semester. The rest 
will pick up as we go. Below list the mathematical equations for the LSRA calculation, 
and a tutorial on using excel to help you calculate these values. 
 
LSRA Parameters 
 
The “best fit” line y = mx + b 
Minimize the square of the vertical deviation - di

2 
di

2 = (yi – y)2 = (yi – (mxi + b))2 
sy = [Σ di

2 / (n-2)]1/2 
n = the number of data points 
D = nΣ(xi

2) − (Σxi)2 
m (the slope) = [nΣ(xiyi) − ΣxiΣyi]/D 
b (the intercept) = [Σ(xi

2)Σyi − ΣxiΣ(xiyi)]/D = yave - mxave 
 
 
Error analysis using LSRA 
error in slope = sm = [nsy

2/D]1/2 
error in intercept = sb = [sy

2Σ(xi
2)/D]1/2 

 
 
For typical calibration plot: 
error in unknown x from interpolation sx 
sx = {(sy/m)2 [1/kunk + 1/D ( x2n - 2xΣxi + Σ(xi

2) )]}1/2 
k = number of replicate measurements of the unknown 
x = the calculate x value for the unknown 
 



 
For standard addition plot: 
error in x intercept 
sx-int= { (sy/m)2 [ 1/D ( nxint

2 - 2xintΣxi + Σ(xi
2) ] }1/2 

xint = the value for the x-intercept 
 
 
Tutorial on using excel for LSRA 
 
Let’s use some made up atomic absorption data. Atomic absorption was used to measure 
Ca2+ in a Tum’s tablet. A standard curve is to be prepared by measuring the absorbance 
of several standard solutions of known [Ca2+]. The data is typed into the spreadsheet as 
shown below. 
 
[ 
  [Ca2+] abs 
  x y 
std A 2.607 0.042 
std B 5.213 0.081 
std C 10.426 0.165 
std D 15.639 0.238 
std E 26.065 0.399 

 
 
Now, let’s first let Excel perform a regression analysis for us. Go to “Tools” in the tool 
bar at the top. If there is a “Data Analysis” under the “Tools” tab, click it. If it is not there, 
you will have to add it. In this case click on “Add-ins” under the “Tools” tab, check both 
“Analysis Tool” packs, and click “OK”. When you go back into the “Tool” tab, 
“Analysis Tools” should now be there. Once you click on it, scroll down to “regression”, 
click on it, and hit “OK”. Input the y and x data (for example, by clicking, holding, and 
dragging until all of the x data is highlighted), select the “output range” box and choose a 
cell to place the data that is removed from your data (such as A12). Also check the 
“residuals” box, and hit OK! On the data sheet scroll down to A12. The results give 
several pieces of data. An example of the output from the regression of the above data is 
shown on the next page.  You can see that it gives a correlation coefficient (multiple R) 
and R2. It also gives the standard error of regression, sy, just below the adjusted R. 
Further down the intercept and the “X variable”, which is really the slope is given along 
with there standard errors, sb and sm. The upper and lower range of 95 % CL of the 
intercept and slope is also given. These are based on the product of t(n-2) and the standard 
errors. However, if you were reporting the error in the slope and intercept based on the 
95 % confidence limit it would be proper to divide these values by n1/2, because we 
would want to use the estimate of the standard deviation of the mean. 
 
 
 
 



  [Ca2+] abs     
  x y     
std A 2.607 0.042    
std B 5.213 0.081    
std C 10.426 0.165    
std D 15.639 0.238    
std E 26.065 0.399    
  SUMxi       
sum 59.95     
           
       
SUMMARY OUTPUT     
       

Regression Statistics      
Multiple R 0.999867      
R Square 0.999733      
Adjusted R 
Square 0.999645     
Standard 
Error 0.00267      
Observations 5      
       
ANOVA       

  df SS MS F 
Significance 

F  
Regression 1 0.080249 0.080249 11252.97 1.85E-06  
Residual 3 2.14E-05 7.13E-06    

Total 4 0.08027        

       

  Coefficients 
Standard 

Error t Stat P-value Lower 95% 
Upper 
95% 

Intercept 0.002883 0.002091 1.378433 0.261878 -0.00377 0.009538 

X Variable 1 0.015189 0.000143 106.08 1.85E-06 0.014733 0.015645 

 
OK. Let’s say the absorbance of the diluted extract of a Tum’s tablet was 0.253.  Based 
on the slope and intercept, the [Ca2+] of this diluted extract is 16.4669 ppm Ca2+.  How do 
we determine the uncertainty associated with this number?   We need to use 
 

sx = {(sy/m)2 [1/kunk + 1/D ( x2n - 2xΣxi + Σ(xi
2) )]}1/2 

kunk = 1, because we only made one measurement of the 
unknown 
x = 16.4669 
sy = 0.00267 
m = 0.015189 
Σxi = ? 
Σ(xi2) = ? 

D = nΣ(xi2) − (Σxi)2 = ? 



 
We could perform this calculation, but we first need to get Σxi , Σ(xi

2), and D. These are 
easily calculated using the spreadsheet. Two spaces below the column of x’s I will 
calculate the sum of the x’s (Σxi ) [type “=SUM” and click, hold, and drag the x’s]. Now 
I label the column adjacent to the y’s as“x^2”, and calculate the square of each of the x 
values. And then two spaces below the column of x^2’s I will calculate the sum of the 
x^2’s [Σ(xi

2)].  From here D is easily calculated. 
 
  [Ca2+] Abs       
  x Y x^2     
std A 2.607 0.042 6.796449     
std B 5.213 0.081 27.17537     
std C 10.426 0.165 108.7015     
std D 15.639 0.238 244.5783     
std E 26.065 0.399 679.3842     
  SUMxi   SUM(xi)^2   D 
sum 59.95   1066.636   1739.177

 
Now, we can plug everything in and calculate sx. 

sx = 0.197 
 
Thus, the concentration of the diluted extract is 
16.6±0.2 ppm (both would be acceptable in this case). 
Try to use the spreadsheet with this data to hone and test your Excel abilities. 


