Redox Titration

Redox Titration

- $Ce^{4+} + Fe^{2+} \rightarrow Ce^{3+} + Fe^{3+}$
- Redox titration is based on the redox reaction (oxidation-reduction) between analyte and titrant.

Position of the end point

Determine the end point

- Indicator electrode
- Redox indicators the indicator has different color at reduction and oxidation state.
- Non redox indicator change color when excess amount of titrant exists, e.g.
 Starch changes to deep blue color when excess amount I₂ remains

Redox indicator

To predict the potential range over which the indicator color w write a Nernst equation for the indicator.

In(oxidized) +
$$ne^- \rightleftharpoons \ln(\text{reduced})$$

 $E = E^\circ - \frac{0.059 \ 16}{n} \log\left(\frac{[\ln(\text{reduced})]}{[\ln(\text{oxidized})]}\right)$

As with acid-base indicators, the color of In(reduced) will be observ

$$\frac{[\text{In(reduced)}]}{[\text{In(oxidized)}]} \gtrsim \frac{10}{1}$$

and the color of In(oxidized) will be observed when

$$\frac{[\text{In(reduced)}]}{[\text{In(oxidized)}]} \lesssim \frac{1}{10}$$

Putting these quotients into Equation 16-14 tells us that the color over the range

$$E = \left(E^{\circ} \pm \frac{0.059\ 16}{n}\right) \text{volts}$$

7

Redox indicators

Table 16-2Redox indicators

	Color		
Indicator	Oxidized	Reduced	E°
Phenosafranine	Red	Colorless	0.28
Indigo tetrasulfonate	Blue	Colorless	0.36
Methylene blue	Blue	Colorless	0.53
Diphenylamine	Violet	Colorless	0.75
4'-Ethoxy-2,4-diaminoazobenzene	Yellow	Red	0.76
Diphenylamine sulfonic acid	Red-violet	Colorless	0.85
Diphenylbenzidine sulfonic acid	Violet	Colorless	0.87
Tris(2,2'-bipyridine)iron	Pale blue	Red	1.120
Tris(1,10-phenanthroline)iron (ferroin)	Pale blue	Red	1.147
Tris(5-nitro-1,10-phenanthroline)iron	Pale blue	Red-violet	1.25
Tris(2,2'-bipyridine)ruthenium	Pale blue	Yellow	1.29

The indicator potential transition range should overlap the steep part of the titration curve

Adjustment of oxidation state

- Sometimes the oxidation states of analytes need to be adjusted before titration – oxidants need to be removed.
 - Pre-oxidation:
 - $S_2O_8^{2-}$ (peroxydisulfate, persulfate): $S_2O_8^{2-} + 2e \leftrightarrows 2SO_4^{2-}$ $S_2O_8^{2-} + 2H_2O \rightarrow 4SO_4^{2-} + O_2 + 4H^+$ (boiling) sometime, Ag⁺ is needed as catalyst $S_2O_8^{2-} + Ag^+ \rightarrow SO_4^{2-} + SO_4^{-} + 4Ag^{2+}$ • H_2O_2

Adjustment of oxidation state

Example of typical oxidants

- Potassium Permanganate (KMnO₄) $MnO_4^- + 8H^++5e \rightarrow Mn^{2+}+4H_2O E^\circ=1.507V$ (pH<1) $MnO_4^- + 4H^++3e \rightarrow MnO_2 (s)+2H_2O E^\circ=1.692V$ (pH \approx 7) In alkaline solution: $MnO_4^- + e \rightarrow MnO_4^{-2-}$
- Preparation, standardization and storage
 - Not a primary standard, MnO₂ impurity
 - To prepare, dissolve KMnO₄ in DI water, boil in a hour to make sure oxidize all organics, filter through sintered glass filter (why?), store in dark glass.
 - Use either Fe^{2+} or sodium oxalate (Na₂C₂O₄) for standardization

Species analyzed	Oxidation reaction	Notes
Fe ²⁺	$Fe^{2+} \rightleftharpoons Fe^{3+} + e^{-}$	Fe^{3+} is reduced to Fe^{2+} with Sn^{2+} or a
		Jones reductor. Titration is carried out in
		1 M H ₂ SO ₄ or 1 M HCl containing
		Mn^{2+} , H_3PO_4 , and H_2SO_4 . Mn^{2+} inhibits
		oxidation of Cl^- by MnO_4 . H_3PO_4
		complexes Fe^{3+} to prevent formation of
		yellow Fe ³⁺ -chloride complexes.
$H_2C_2O_4$	$H_2C_2O_4 \rightleftharpoons 2CO_2 + 2H^+ + 2e^-$	Add 95% of titrant at 25°C, then complete
	1	titration at 55°–60°C.
Br ⁻	$Br^{-} \rightleftharpoons \frac{1}{2}Br_{2}(g) + e^{-}$	Titrate in boiling 2 M H_2SO_4 to remove
	2	$\operatorname{Br}_2(g).$
H_2O_2	$H_2O_2 \rightleftharpoons O_2(g) + 2H^+ + 2e^-$	Titrate in 1 M H_2SO_4 .
HNO ₂	$HNO_2 + H_2O \rightleftharpoons NO_3^- + 3H^+ + 2e^-$	Add excess standard KMnO ₄ and back-
		titrate after 15 min at 40°C with Fe^{2+} .
As^{3+}	$H_3AsO_3 + H_2O \rightleftharpoons H_3AsO_4 + 2H^+ + 2e^-$	Titrate in 1 M HCl with KI or ICl catalyst.
Sb^{3+}	$H_3SbO_3 + H_2O \rightleftharpoons H_3SbO_4 + 2H^+ + 2e^-$	Titrate in 2 M HCl.
Mo^{3+}	$Mo^{3+} + 2H_2O \rightleftharpoons MoO_2^{2+} + 4H^+ + 3e^-$	Reduce Mo in a Jones reductor, and run the
	2	Mo^{3+} into excess Fe^{3+} in 1 M H ₂ SO ₄ .
		Titrate the Fe^{2+} formed.

 Table 16-3
 Analytical applications of permanganate titrations

Species analyzed	Oxidation reaction	Notes
W ³⁺	$W^{3+} + 2H_2O \rightleftharpoons WO_2^{2+} + 4H^+ + 3e^-$	Reduce W with Pb(Hg) at 50°C and titrate in 1 M HCl.
U^{4+}	$\mathrm{U}^{4+} + 2\mathrm{H}_{2}\mathrm{O} \rightleftharpoons \mathrm{UO}_{2}^{2+} + 4\mathrm{H}^{+} + 2\mathrm{e}^{-}$	Reduce U to U^{3+} with a Jones reductor. Expose to air to produce U^{4+} , which is titrated in 1 M H ₂ SO ₄ .
Ti ³⁺	$Ti^{3+} + H_2O \rightleftharpoons TiO^{2+} + 2H^+ + e^-$	Reduce Ti to Ti^{3+} with a Jones reductor, and run the Ti^{3+} into excess Fe^{3+} in 1 M H_2SO_4 . Titrate the Fe^{2+} that is formed.
Mg ²⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , Zn ²⁺ , Co ²⁺ , La ³⁺ , Th ⁴⁺ , Pb ²⁺ , Ce ³⁺ , BiO ⁺ , Ag ⁺	$H_2C_2O_4 \rightleftharpoons 2CO_2 + 2H^+ + 2e^-$	Precipitate the metal oxalate. Dissolve in acid and titrate the $H_2C_2O_4$.
S ₂ O ₈ ²⁻	$S_2O_8^{2-} + 2Fe^{2+} + 2H^+ \rightleftharpoons 2Fe^{3+} + 2HSO_4^-$	Peroxydisulfate is added to excess standard Fe^{2+} containing H_3PO_4 . Unreacted Fe^{2+} is titrated with MnO_4^- .
PO ₄ ³⁻	$Mo^{3+} + 2H_2O \rightleftharpoons MoO_2^{2+} + 4H^+ + 3e^-$	$(NH_4)_3PO_4 \cdot 12MoO_3$ is precipitated and dissolved in H_2SO_4 . The Mo(VI) is reduced (as above) and titrated.

Methods involving lodine

Iodine is hardly soluble in water, but very soluble in Iodide solution

 $I_2 + I^2 \neq I_3^-$ (triiodide)

- Iodimetry: I₃⁻ as titrant Iodometry: I₃⁻ is produced by adding oxidating analytes into excess amount of Iodide (I⁻)
- Indicator starch, added near the end point (lodometry), but at the beginning for lodimetry.
- Standardization (pure enough for primary standard, but evaporates during weighting)
 - Weight and dissolve in I⁻
 - Use Arsenious Oxide (As $_4O_6$) or Soduim Thiosulfate (Na $_2S_2O_4$) for standardization
- Storage, no light, no oxygen

Species analyzed	Oxidation reaction	Notes
As ³⁺	$H_3AsO_3 + H_2O \rightleftharpoons H_3AsO_4 + 2H^+ + 2e^-$	Titrate directly in NaHCO ₃ solution with I_3^- .
Sn ²⁺	$\mathrm{SnCl}_4^{2-} + 2\mathrm{Cl}^- \rightleftharpoons \mathrm{SnCl}_6^{2-} + 2\mathrm{e}^-$	Sn(IV) is reduced to Sn(II) with granular Pb or Ni in 1 M HCl and titrated in the absence of oxygen.
N_2H_4	$N_2H_4 \rightleftharpoons N_2 + 4H^+ + 4e^-$	Titrate in NaHCO ₃ solution.
SÕ ₂	$SO_2 + H_2O \rightleftharpoons H_2SO_3$ $H_2SO_3 + H_2O \rightleftharpoons SO_4^{2-} + 4H^+ + 2e^-$	Add SO ₂ (or H_2SO_3 or HSO_3^- or SO_3^{2-}) to excess standard I_3^- in dilute acid and back-titrate unreacted I_3^- with standard thiosulfate.
H ₂ S	$H_2S \rightleftharpoons S(s) + 2H^+ + 2e^-$	Add H_2S to excess I_3^- in 1 M HCl and back-titrate with thiosulfate.
Zn ²⁺ , Cd ²⁺ , Hg ²⁺ , Pb ²⁺	$M^{2+} + H_2 S \rightarrow MS(s) + 2H^+$ $MS(s) \rightleftharpoons M^{2+} + S + 2e^-$	Precipitate and wash metal sulfide. Dissolve in 3 M HCl with excess standard I_3^- and back-titrate with thiosulfate.
Cysteine, glutathione, thioglycolic acid, mercaptoethanol	$2RSH \rightleftharpoons RSSR + 2H^+ + 2e^-$	Titrate the sulfhydryl compound at pH $4-5$ with I_3^- .
HCN	$\rm I_2 + HCN \rightleftharpoons ICN + I^- + H^+$	Titrate in carbonate-bicarbonate buffer, using <i>p</i> -xylene as an extraction indicator.
H ₂ C=O	$H_2CO + 3OH^- \rightleftharpoons HCO_2^- + 2H_2O + 2e^-$	Add excess I_3^- plus NaOH to the unknown. After 5 min, add HCl and back-titrate with thiosulfate.
Glucose (and other reducing sugars)	$ \begin{matrix} \mathbf{O} \\ \parallel \\ \mathbf{RCH} + 3\mathbf{OH}^{-} \rightleftharpoons \mathbf{RCO}_{2}^{-} + 2\mathbf{H}_{2}\mathbf{O} + 2\mathbf{e}^{-} \end{matrix} $	Add excess I_3^- plus NaOH to the sample. After 5 min, add HCl and back-titrate with thiosulfate.
Ascorbic acid (vitamin C)	Ascorbate + $H_2O \rightleftharpoons$ dehydroascorbate + $2H^+$ + $2e^-$	Titrate directly with I_3^- .
H ₃ PO ₃	$H_3PO_3 + H_2O \Rightarrow H_3PO_4 + 2H^+ + 2e^-$	Titrate in NaHCO ₃ solution.

Table 16-4 Titrations with standard triiodide (iodimetric titrations)

Table 16-5	Titration of I_3^- produced by analyte (iodometric titrations)	
Species analyzed	Reaction	Notes
Cl ₂	$CI_2 + 3I^- \rightleftharpoons 2CI^- + I_3^-$	Reaction in dilute acid.
HOCI	$HOCI + H^+ + 3I^- \rightleftharpoons CI^- + I_3^- + H_2O$	Reaction in 0.5 M H_2SO_4 .
Br ₂	$Br_2 + 3I^- \rightleftharpoons 2Br^- + I_3^-$	Reaction in dilute acid.
BrO_3^-	$BrO_3^- + 6H^+ + 9I^- \rightleftharpoons Br^- + 3I_3^- + 3H_2O$	Reaction in 0.5 M H_2SO_4 .
IO_3^-	$2\mathrm{IO}_3^- + 16\mathrm{I}^- + 12\mathrm{H}^+ \rightleftharpoons 6\mathrm{I}_3^- + 6\mathrm{H}_2\mathrm{O}$	Reaction in 0.5 M HCl.
IO_4^-	$2\mathrm{IO}_4^- + 22\mathrm{I}^- + 16\mathrm{H}^+ \rightleftharpoons 8\mathrm{I}_3^- + 8\mathrm{H}_2\mathrm{O}$	Reaction in 0.5 M HCl.
O ₂	$O_2 + 4Mn(OH)_2 + 2H_2O \rightleftharpoons 4Mn(OH)_3$ $2Mn(OH)_3 + 6H^+ + 6I^- \rightleftharpoons 2Mn^{2+} + 2I_3^- + 6H_2O$	The sample is treated with Mn^{2+} , NaOH, and KI. After 1 min, it is acidified with H_2SO_4 , and the I_3^- is titrated.
H_2O_2	$H_2O_2 + 3I^- + 2H^+ \rightleftharpoons I_3^- + 2H_2O$	Reaction in 1 M H ₂ SO ₄ with NH ₄ MoO ₃ catalyst.
O_3^{a}	$O_3 + 3I^- + 2H^+ \rightleftharpoons O_2 + I_3^- + H_2O$	O_3 is passed through neutral 2 wt % KI solution. Add H_2SO_4 and titrate.
NO_2^-	$2HNO_2 + 2H^+ + 3I^- \rightleftharpoons 2NO + I_3^- + 2H_2O$	The nitric oxide is removed (by bubbling CO_2 generated in situ) prior to titration of I_3^- .
As^{5+}	$H_3AsO_4 + 2H^+ + 3I^- \rightleftharpoons H_3AsO_3 + I_3^- + H_2O$	Reaction in 5 M HCl.
$S_2O_8^{2-}$	$S_2O_8^{2-} + 3I^- \rightleftharpoons 2SO_4^{2-} + I_3^-$	Reaction in neutral solution. Then acidify and titrate.
Cu^{2+}	$2Cu^{2+} + 5I^{-} \rightleftharpoons 2CuI(s) + I_{3}^{-}$	NH_4HF_2 is used as a buffer.
$Fe(CN)_6^{3-}$	$2Fe(CN)_6^{3-} + 3I^- \rightleftharpoons 2Fe(CN)_6^{4-} + I_3^-$	Reaction in 1 M HCl.
MnO_4^-	$2MnO_4^- + 16H^+ + 15I^- \rightleftharpoons 2Mn^{2+} + 5I_3^- + 8H_2O$	Reaction in 0.1 M HCl.
MnO ₂	$MnO_{2}(s) + 4H^{+} + 3I^{-} \rightleftharpoons Mn^{2+} + I_{3}^{-} + 2H_{2}O$	Reaction in 0.5 M H_3PO_4 or HCl.
$Cr_2O_7^{2-}$	$Cr_2O_7^{2-} + 14H^+ + 9I^- \rightleftharpoons 2Cr^{3+} + 3I_3^- + 7H_2O$	Reaction in 0.4 M HCl requires 5 min for completion and is particularly sensitive to air oxidation.
Ce ⁴⁺	$2Ce^{4+} + 3I^- \rightleftharpoons 2Ce^{3+} + I_3^-$	Reaction in 1 M H_2SO_4 .

a. The pH must be ≥ 7 when O₃ is added to I⁻. In acidic solution each O₃ produces 1.25 I₃⁻, not 1 I₃⁻. [N. V. Klassen, D. Marchington, and H. C. E. McGowan, Anal. Chem. 1994, 66, 2921.]

Can be used to analyze oxidants and reductants

Electroanalysis

Thermodynamic and Kinetic

- If there is no net current passing through the electrochemical cell, the system is at thermodynamically equilibrium state. The potential can be calculated by Nernst equation.
- If there is net current passing through, the system is away from the thermodynamic equilibrium state, thus the potential can not be calculated by Nernst equation

Kinetics of electrochemical system

- When Current passing through the system, the potential will move away from that of equilibrium state for three reasons
 - Overpotential
 - IR drop
 - Concentration polarization

Overpotential

 Overpotential is to overcome the activation of energy barrier of the reaction

IR drop

Inevitably, the electrochemical system will have ohimic resistance, when the current runs through the system, the voltage will drop due the ohmic resistance:
 ΔV= IR

Concentration Overpotential

 Due to the concentration gradient from the surface of the electrode to the bulk of the solution.

Three electrode system

- Working electrode: where the analytical reaction happens
- Counter electrode: for the current to flow and make a close circuit.
- Reference electrode: no current pass through and serve as a reference point for potential measurement
- Why three electrode system is needed??

Amperometry

Three electrode system

- Working electrode: where the analytical reaction happens
- Counter electrode: for the current to flow and make a close circuit.
- Reference electrode: no current pass through and serve as a reference point for potential measurement
- Why three electrode system is needed??

Polarography: Historical Significance

- Polarograph developed by Jaroslav Heyrovsky in 1922.
- Heyrovsky won Nobel Prize
- Polarograph is THE most widely used electro analytical method
- Still one of the most reliable analytical method for ppm level impurities.

Setup Polarograph

- Dropping Hg electrode (DME)
- Working under limited diffusion current

Polarography curve

Example

 Cd²⁺+2e→Cd E (vs SCE)=-0.64 V Zn²⁺+2e→Zn E (vs SCE)=-1.10 V

Electrogravimetric Analysis

- Quantitatively electrochemically deposit analyte onto electrode, the amount of analyte can be measured by measure the weight change of the electrode.
- The end point determination
 - Color change e.g. $Cu^{2+} + 2e \rightarrow Cu$
 - Deposition on fresh electrode surface.

Electrogravimetric Analysis

Coulometry

Coulometry

- Advantage of Coulometry titration
 - Precision
 - Sensitivity
 - Generating otherwise unstable titrant in-site
- Constant current Q=I x t
- Constant potential
 - 3-electrode system
 - Q=∫ I x t
 - More sensitive and selective

Cyclic voltammetry

- Linear Sweep Voltammetry (LSV)
- Cyclic Voltammetry (CV)-good for the study of reaction mechanism

Karl Fischer Titration of H₂O

- Detecting trace amount of water in organic solution.
- An example of coulometric titration

