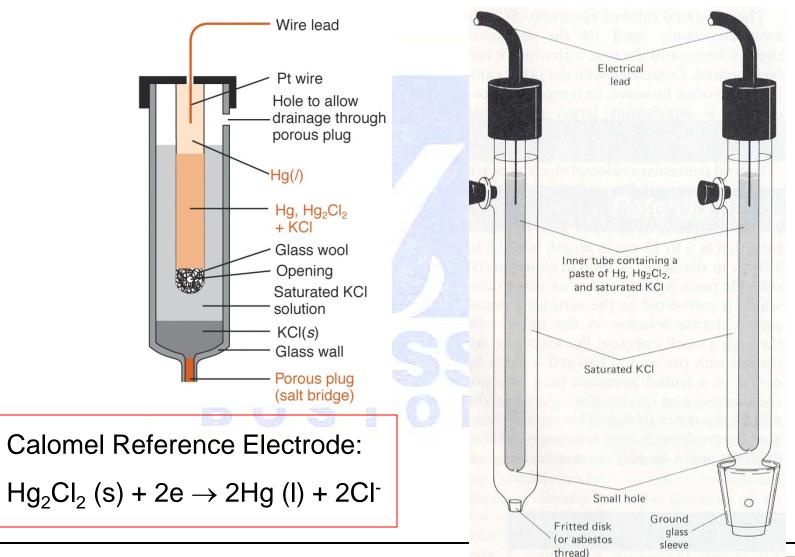

Potentiometric Electrode

Reference Electrode

Reference electrode

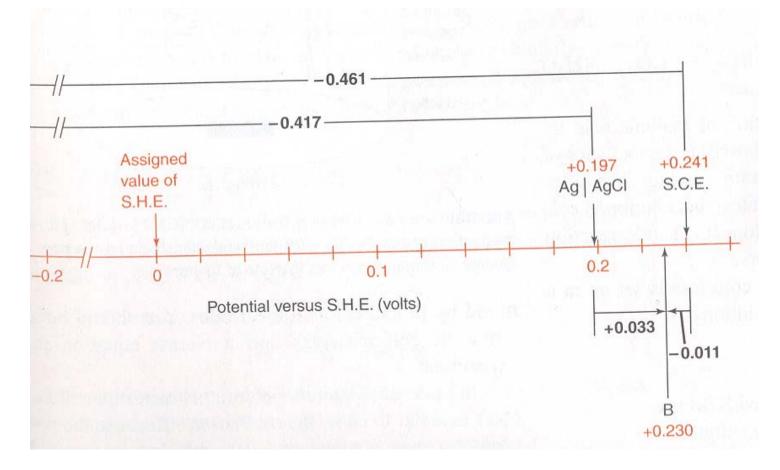
- Reversible and obey Nernst equation
- Exhibit a potential that is constant with time
- Return to its original potential after being subjected to small currents (high exchange current)
- Little change in potential with temperature
- Behave as an ideal nonpolarizable electrode

Configuration of a typical reference electrode

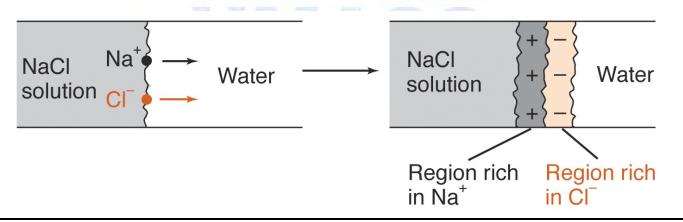


Silver-Silver Oxide Reference Electrode:

 $Ag + CI^- \rightarrow AgCI + e$



Configuration of a typical reference electrode


Voltage conversions between different reference electrode

Liquid Junction Potential

- Due to the concentration gradient
 - Difference on chemical potential
 - Difference on the mobility of ions
- NOT a equilibrium process, but when it react steady state, can be treated as a constant

KCI is normally used in the salt bridge to minimize the junction potential due to the fact that K⁺ and Cl⁺ have similar mobility

	Mobilities of ions				
in water at 25°C					
Ion	Mobility $[m^2/(s \cdot V)]^a$				
H^+	36.30×10^{-8}				
Rb^+	$7.92 imes 10^{-8}$				
K^+	$7.62 imes10^{-8}$				
NH_4^+	$7.61 imes 10^{-8}$				
La ³⁺	$7.21 imes 10^{-8}$				
Ba^{2+}	$6.59 imes 10^{-8}$				
Ag^+	$6.42 imes 10^{-8}$				
Ca^{2+}	$6.12 imes 10^{-8}$				
Cu^{2+}	$5.56 imes 10^{-8}$				
Na^+	$5.19 imes 10^{-8}$				
Li ⁺	$4.01 imes 10^{-8}$				
OH^-	$20.50 imes 10^{-8}$				
$Fe(CN)_6^{4-}$	$11.45 imes 10^{-8}$				
$Fe(CN)_6^{3-}$	$10.47 imes 10^{-8}$				
SO_4^{2-}	$8.27 imes10^{-8}$				
Br^{-}	$8.13 imes 10^{-8}$				
Ι-	$7.96 imes 10^{-8}$				
Cl ⁻	$7.91 imes 10^{-8}$				
NO_3^-	$7.40 imes 10^{-8}$				
ClO_4^-	$7.05 imes10^{-8}$				
F^{-}	$5.70 imes 10^{-8}$				
HCO_3^-	4.61×10^{-8}				
$\rm CH_3\rm CO_2^-$	$4.24 imes10^{-8}$				

a. The mobility of an ion is the terminal velocity that the particle achieves in an electric field of 1 V/m. Mobility = velocity/field. The units of mobility are therefore $(m/s)/(V/m) = m^2/(s \cdot V)$.

Thermodynamics

- Under the conditions of constant P and T $(\Delta G)_{T,P} = -W_{non-expansion} = -nF\Delta E$ *Chemical energy Electric Energy* $(\Delta G = \sum \mu_{I}; \mu \text{ is the chemical potential})$
- For Reaction $aA + cC \leftrightarrow bB + dD$ $\Delta G = \Delta G^{\circ} + RTIn([B]^{b}[D]^{d}/[A]^{a}[c]^{\circ})$ $-nF\Delta E = -nF\Delta E^{\circ} + RTIn([B]^{b}[D]^{d}/[A]^{a}[c]^{\circ})$ $\Delta E = \Delta E^{\circ} - (RT/nF)In([B]^{b}[D]^{d}/[A]^{a}[c]^{\circ})$ Nernst Equation

Nernst Equation

 Reaction aA + cC ↔ bB + dD Can divided into $nA + n e \leftrightarrow bB$ (reduction) E_{red} $cC - n e \leftrightarrow dD$ (oxidation) E_{oxi} $E_{red} = E_{red}^{0} - (RT/nF)ln ([B]^{b}/[A]^{a})$ $E_{oxi} = E_{oxi}^{0} - (RT/nF) ln ([D]^{d}/[c]^{c})$ • $E = E^o - \frac{0.059}{n} ln \frac{[B]^b}{[A]^a}$ (when T=298.15K

Equilibrium Constant $aA + cC \Leftrightarrow bB + dD$ $\Delta G = \Delta G^{o} + RT \ln(\frac{[B]^{b}[D]^{d}}{[A]^{a}[C]^{c}}) = \Delta G^{o} + RT \ln K$ at equilibrium: $\Delta G = 0$ $\Delta G^{\circ} = -RT \ln K = -nFE^{\circ}$ $E^{o} = \frac{RT}{nF} \ln K$

Oxidation/reduction power

Table 14-1Ordered redox potentials						
	Oxi	dizing agent	Reducing agent		E° (V)	
\uparrow	$O_3(g)$	$F_2(g) + 2e^-$ + 2H ⁺ + 2e ⁻	$F \rightleftharpoons 2F^{-}$ $F \rightleftharpoons O_2(g) + H_2O$:	Reducing power increases	2.890 2.075	
	MnO_4^-	$+ 8H^{+} + 5e^{-}$	$\stackrel{\cdot}{=} Mn^{2+} + 4H_2O$	ver inc	1.507	
ses ==		$Ag^+ + e^-$	A = Ag(s)	nod gu	0.799	
increas		$Cu^{2+} + 2e^{-}$	$T \rightleftharpoons Cu(s)$	Reduci	0.339	
ower j		$2H^{+} + 2e^{-}$	$H \rightleftharpoons H_2(g)$		0.000	
Oxidizing power increases		$Cd^{2+} + 2e^{-}$	$ \rightleftharpoons \operatorname{Cd}(s)$		-0.402	
)xid		$K^{+} + e^{-}$			-2.936	
0		$Li^{+} + e^{-}$	\rightleftharpoons L1(S)	\mathbf{A}	-3.040	

The system for Potentiometric methods

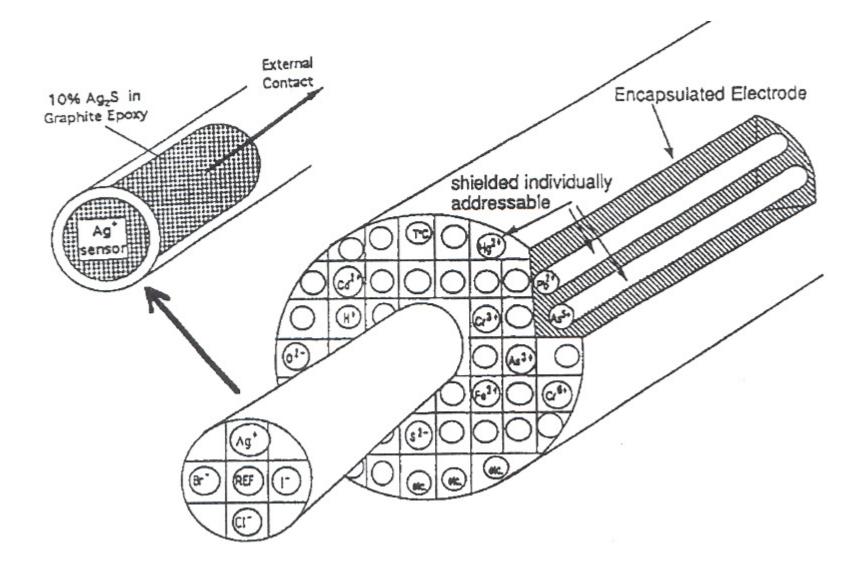
- Reference Electrode
 - Maintains a fixed potential
- Indicator electrode
 - Response to analyte activity
- Potential measuring device
 - Volt meter with high input impedance.
- E(cell)=E(indicator)-E(reference)+E(junction)

E (cell)=Klog[ion]

Redox Electrode

- Electrochemically inert electrode e.g. Pt, Ag, Au, carbon etc.
- Function as an electrocatalyst and conductor for the redox reaction
- $Fe(CN)_6^{3-} + e \Leftrightarrow Fe(CN)_6^{4-}$

Indicator electrode

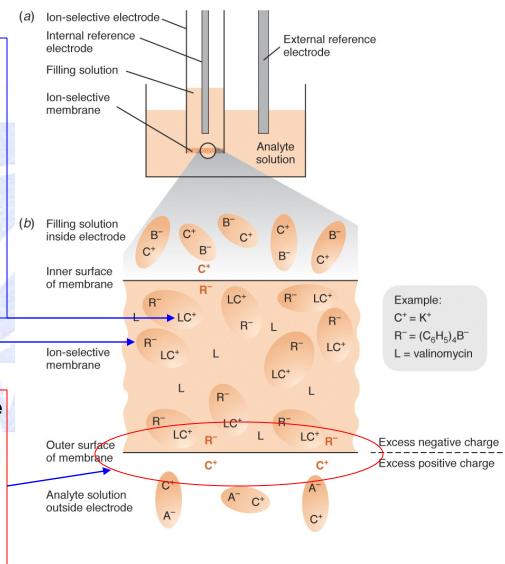

- Metal electrode first kind
 e.g. Cu (Solid) ⇔ Cu²⁺ (aqueous) + 2e
 E = E^o RT/nF ln(1/[Cu²⁺])
- Not very selective Cu²⁺ ⇔ Cu⁺ Cu²⁺ + I⁻ + e ⇔ Cul (solid) etc

Indicator electrode

- Second kind: ions forms a precipitate and stable complex ion on metal AgCl (s) + e ⇔ Ag (s) + Cl⁻ E=0.222 – 0.0591log[Cl]
- Good selectivity
- Microelectrode array for multiple detections

Ion selective membranes Electrode

- Is capable of binding only the intended ion.
- Minimal solubility.
- Electrical conductivity through ionic migration.
- Selective reactivity: selectively binding with target ion, three types of binding, ion-exchange, crystallization and complexation.



L is call ionophone, which is a ligand, only binds with C⁺. L is soluble in the membrane but insoluble in aqueous solution, so it will stay in the membrane

R⁻ is hydrophobic organic species, which is hardly soluble in water, so will stay inside the membrane

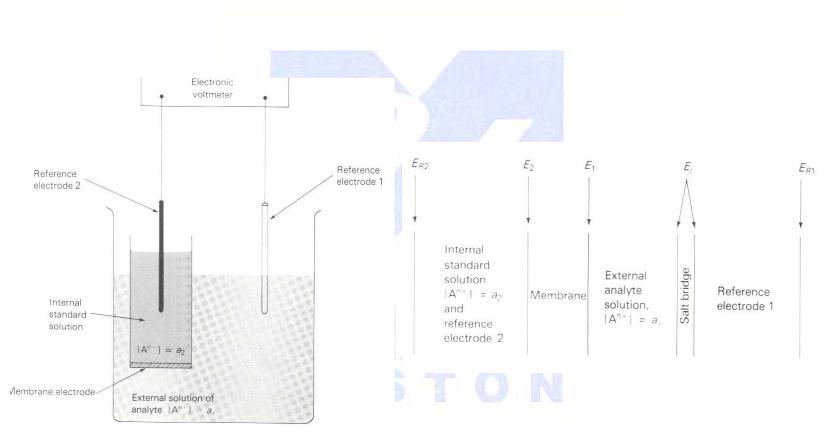
There are sufficient amount of C⁺ inside membrane and excess amount of L, so almost all C⁺ is attached with L. The concentration of C⁺ inside the membrane is constant. Why?

Very little amount of C⁺ diffuse out of the membrane and leave R⁺ behind. The space charge region will be created, the potential field is against the diffusion of C⁺. When it becomes equilibrium, a potential different will be created at the interface, which is proportional to the concentration of C⁺ in the solution.

Thermodynamics for ion selective membrane

at the outer interface

$$\Delta G = \Delta G_{solvation} - RT \ln(\frac{C_m}{C_o})$$
at equilibrium $\Delta G = -nFE_{out}$


$$\Delta G_{solvation} - RT \ln(\frac{C_m}{C_o}) + (-nFE_{out}) = 0.$$
So $E_{out} = \frac{\Delta G_{solvation}}{nF} - (\frac{RT}{nF}) \ln(\frac{C_m}{C_o})$

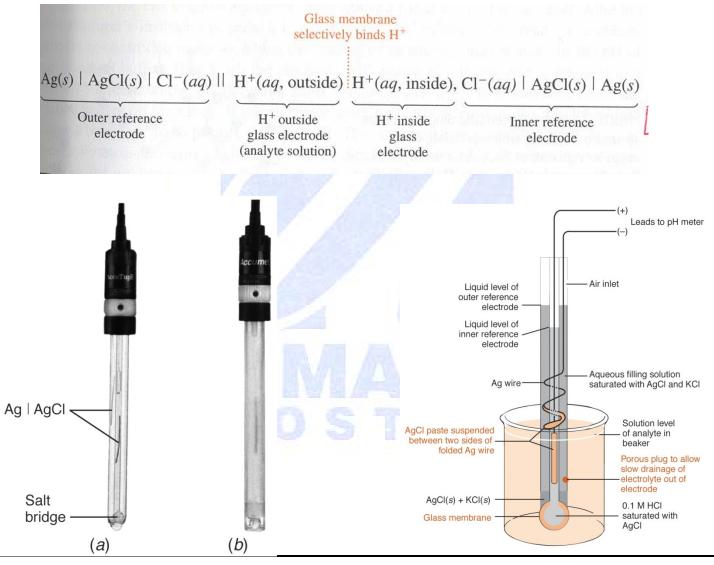
$$E = E_{outer} - E_{inner} = \frac{\Delta G_{solvation}}{nF} - (\frac{RT}{nF}) \ln(\frac{C_m}{C_o}) - E_{inner}$$

$$E = \frac{\Delta G_{solvation}}{nF} + (\frac{RT}{nF}) \ln(C_o) - (\frac{RT}{nF}) \ln(C_m) - E_{inner}$$
So $E = Const + (\frac{RT}{nF}) \ln(C_m)$

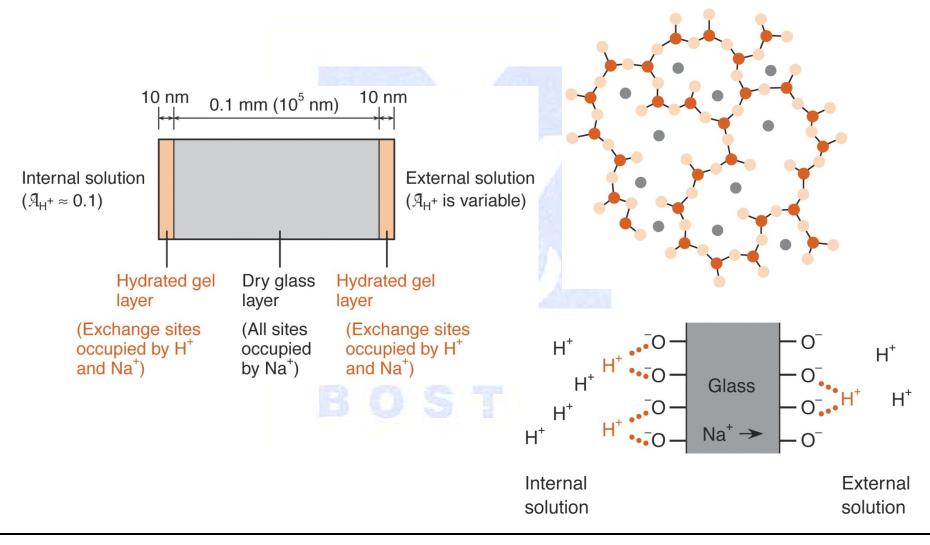
Configuration of ion selective membrane electrodes

Requirement of indicator electrode

- Sensitivity
- Selectivity


-K=response to X/response to A

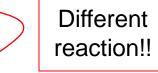
UMASS. BOSTON



pH Electrode – an example

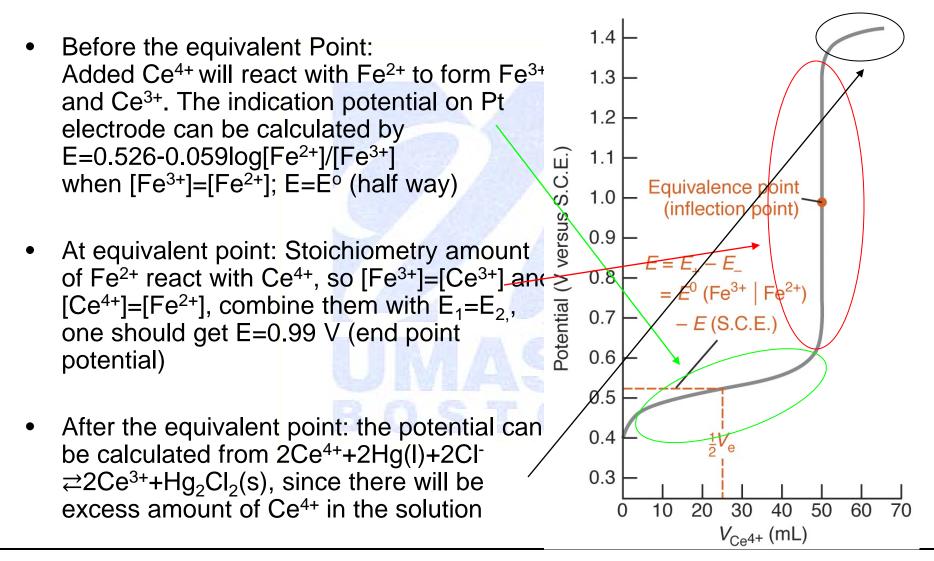
Glass membrane – a ion selective membrane

Redox Titration


Electrochemical reactions

- Two electrochemical reactions
 - Titration reaction: (titrate ferrous with ceric) $Ce^{4+} + Fe^{2+} \rightarrow Ce^{3+} + Fe^{3+}$
 - Indication reaction: (determine end point) Reference (calomel): 2Hg(I)+2CI⁻ ≠ Hg₂Cl₂+2e Indicator 1 half reaction: Fe³⁺+e ≠ Fe²⁺ Indicator 2 half reaction: Ce⁴⁺+e≠ Ce³⁺

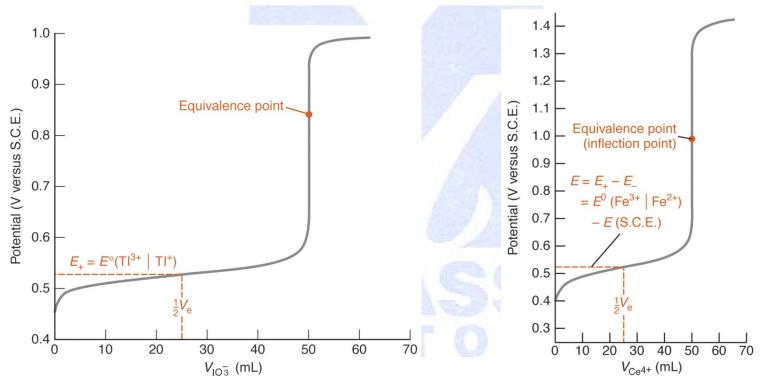
 $2Fe^{3+}+2Hg(I)+2CI^{-} \neq 2Fe^{2+}+Hg_{2}CI_{2}(s)...1$ $2Ce^{4+}+2Hg(I)+2CI^{-} \neq 2Ce^{3+}+Hg_{2}CI_{2}(s)...2$


 $E_1 = E^{\circ} - (RT/nF) ln([Fe^{2+}]^2/[Fe^{3+}]^2[Cl^{-}]^2)$ $E_2 = E^{\circ} - (RT/nF) ln([Ce^{3+}]^2/[Ce^{4+}]^2[Cl^{-}]^2)$

 $E_1 = E_2 = constant - constant ln ([Fe²⁺]²/[Fe³⁺]²)$ = constant - constant ln ([Ce³⁺]²/[Ce⁴⁺]²)

The Shape of the titration curve

Dilution factor


- The indication potential is determined by the ratio of the redox couple e.g.
 E₁ = constant- constant ln([Fe²⁺]²/[Fe³+]²)
- The shape of the titration curve will be independent of dilution

Position of the end point

• The position of the end point is related to the reaction stoichiometry

• Since the potential change near the end point is so steep, the position of end point will not introduce much error

