Fundamental of Electrochemistry

Redox reaction

- Redox = reduction and oxidation
 - The reaction involves electron transfer from one reactant to another – the oxidation state of the elements has to be changed.
- $Cu^{2+} + Zn \rightarrow Cu + Zn^{2+}$
 - Cu²⁺ gaining two electrons is oxidizing agent, being reduced.
 - Zn losing two electrons is reducing agent, being oxidized.
- Faraday constant:
 - The unit of electric charge is coulombs (C).
 - One electron has $1.602 \times 10^{-19} \text{ C}$
 - One mole of electron has 96500 C of charge F=96500C/mol

Chemistry and electricity

- $Cu^{2+} + Zn \rightarrow Cu + Zn^{2+}$
 - If Cu²⁺ is mixed with Zn, the electron will transferred and chemical energy will become heat. $\Delta G = \Delta H$ -T ΔS <0.
 - If the reaction is separated in two Half Reactions $Cu^{2+}+2e \rightarrow Cu$ $Zn \rightarrow Zn^{2+}+2e$ electrons flow from Zn electrode to Cu electrode Current (?) flows from Cu to Zn Cu is positive electrode
 - Zn is negative electrode

Strip of

Cu metal

The driving force of electron flow

- Second Law of thermodynamic: For spontaneous reaction, ∆G<0.
- $Cu^{2+}+2e \rightarrow Cu \quad \Delta G_1$ $Zn^{2+}+2e \rightarrow Zn \quad \Delta G_2$ $\Delta G = \Delta G_1 - \Delta G_2 < 0$
- ∆G = -work so the electron flow from Zn to Cu through the load e.g. a radio to do the work, instead of generating heat.

Redox reactions

- Redox reaction always happen in couple of oxidation and reduction and can not happen alone.
- For example the reaction can not happen

Electrons can not be created

Electric current

- Current is resulted from the movement of the charged species e.g. electron or ions in the solution.
- The direction of electric current is the direction of the movement of positive charges.
- Current flows from high potential to low potential, while electron flow from low potential to high potential.
- The unit of current is Ampere (A): the quantity of charge flowing each second through a circuit.

1 A = 1C/s

Terminologies

- *Redox* (short for Oxidation/Reduction) reactions:
- electrons, ne-, are transferred between reactants
- A substance which loses electrons is oxidized, the substance is reductant. A reductant (reducing agent) is a substance causing reduction.
- A substance which gains electrons is *reduced*, the substance is *oxidant*, An oxidant (oxidizing agent) is a substance causing *oxidation*.
- Reactions involving oxidation of A to B and reduction of C to D:
 - $aA + cC \leftrightarrow bB + dD$
 - Separated into two *half-reactions* with equal but opposite etransfer:
 - aA + ne- → bB (*cathode*)
 - and cC ne- \rightarrow dD (anode)

Chemistry and electricity

- $Cu^{2+} + Zn \rightarrow Cu + Zn^{2+}$
 - If Cu²⁺ is mixed with Zn, the electron will transferred and chemical energy will become heat. $\Delta G = \Delta H$ -T ΔS <0.
 - If the reaction is separated in two Half Reactions $Cu^{2+}+2e \rightarrow Cu$ Load $Zn \rightarrow Zn^{2+}+2e$ Salt bridge electrons flow from Zn electrode to Cu electrode Current flows from Cu to Zn 0.1 M 0.1 M Strip of Strip of ZnCl CuSO₄ Zn metal Cu metal Cu is positive electrode Zn is negative electrode

Electrochemical Potential

- Electrode potentials express the driving force for oxidation or reduction
 - A negative electrode potential describes a material easier to oxidize compared to chemical species with a more positive potential
 - A positive electrode potential describes a material easier to reduce.
- This is given by electromotive force or potential, "E" with units of volts
- Electrochemical potential express the possibility of the redox reaction, but does not express the kinetic of the reaction!

Electrode potential

- Redox reaction energy creates measurable electrochemical potential determined by the thermodynamics & related equilibria of the reaction
- Requires complete circuit to compare the voltage between electrodes.
- Can not measure the voltage of half a cell, requires 2 electrodes
- placed in an electrolytic medium. For ex., voltmeter reads 0.46 V in: Cu | CuSO4(0.1 M) | AgSO4(0.1 M) | Ag

Electric potential

- Moving charges from one potential to another needs to do work:
 Work = Potential difference x charge
- $\Delta G = -work = -Potential difference x charge$

 $\Delta G = -nFE$

Relationship between free energy and potential difference.

 Units: potential (E): Volt (V) work (W): Joule = one coulomb of charge moves between the points of 1 Volt =-nFE

Terminologies

- Resistance:
 Ohm's law: R=E/I
- Power: work done in the unit time
 - P=work/s=Eq/s=E x q/s P=E x I
 - Unit Watt (W)

Critical Relationships

- Charge and moles
 - Q (C)= n (moles) x F (Faraday constant 96500)
- Work and voltage
 Work (J) = E (V) x Q (C)
- Free energy and potential
 - $-\Delta G (J) = -n(mole) \times F (96500C/mol) \times E (V)$
- Ohm's law
 - I (A) = E (V)/R (ohm)
- Power

- P (watt) = work (J) / S = E (V) x I (A)

Galvanic Cells

- Converting chemical energy into electric energy by using spontaneous chemical reaction.
- Reduction cathode: 2AgCl (s) +2e ≠ 2Ag (s) + 2Cl⁻ (aq)
- Oxidation Anode: Cd (s)
 ⊂ Cd²⁺ (aq) + 2e
- Total reaction: Cd (s) +2AgCl ≓ Cd²⁺(aq) + 2Ag(s)+2Cl⁻(aq)

Separation of Redox Reactions

Cathode: $2Ag^{+}(aq) + 2e \neq 2Ag(s)$

Anode: Cd (s) \rightleftharpoons Cd²⁺ (aq) + 2e

Total: Cd (s) + $2Ag^{+}(aq) \neq Cd^{2+}(aq) + 2Ag(s)$

Salt Bridge

- Electronic conductivity Vs ionic conductivity
 - Electronic conductivity: movement of electrons
 - Ionic conductivity: movement of ions
 - Both are under potential difference or in the electric field.
- Salt bridge: connecting two half reactions with ionic conductive salt

Notation of electrochemical reactions

- | phase boundary; || salt bridge (two phases)
- Cd (s)|CdCl₂(aq)|AgCl (s)|Ag(s)

Cd(s)|Cd(NO₃)₂ (aq)||AgNO₃ (aq)|Ag(s)

How about without salt bridge?

Standard Electrode Potentials

- Standard electrode potential, "E°", when each of the chemical species participating in a redox process are at standard state and unit activity
 - No absolute point of reference about for an electrode potential scale
 - One half-cell has been arbitrarily defined as E ≡ 0.0000 volt. Reference is a hydrogen-platinum half-cell containing unit activities, called the "Standard Hydrogen Electrode"
 - All other electrode or rest potentials are reported compared to SHE

Standard Potential

- "Standard Hydrogen Electrode" : Pt,H2(pressure = 1 atm) | H+(activity = 1) (the "SHE" or Normal Hydrogen Potential "NHE")SHE describes: $2H^+$ (aq) + 2e- \rightarrow H₂ (gas) E° = 0 V
- All other electrode or rest potentials are reported compared to SHE

e.g.

Ag⁺ + e \rightarrow Ag E°=0.799V

Oxidation/reduction power

Table 14-1 Ordered redox potentials					
Oxidizing agent Reducing agent					E° (V)
Oxidizing power increases — →	$F_{2}(g) + 2e^{-} \rightleftharpoons 2F^{-}$ $O_{3}(g) + 2H^{+} + 2e^{-} \rightleftharpoons O_{2}(g) + H_{2}O$: $F_{2}(g) + 2H^{+} + 2e^{-} \rightleftharpoons O_{2}(g) + H_{2}O$			reases	2.890 2.075
	MnO_4^-	$+ 8H^{+} + 5e^{-}$	$\stackrel{\cdot}{=} Mn^{2+} + 4H_2O$	U ver inc	1.507
		$Ag^{+} + e^{-} \rightleftharpoons Ag(s)$ \vdots $Cu^{2+} + 2e^{-} \rightleftharpoons Cu(s)$ \vdots	nod gu	0.799	
			$T \rightleftharpoons Cu(s)$	——Reducing power increases	0.339
		$2H^{+} + 2e^{-}$	$H \rightleftharpoons H_2(g)$		0.000
		$Cd^{2+} + 2e^{-} \rightleftharpoons Cd(s)$:			-0.402
)xidi		$K^{+} + e^{-}$			-2.936
0		$Li^{+} + e^{-}$	\rightleftharpoons L1(S)	\mathbf{A}	-3.040

