#### Acid and Base



# Dissociation of diprotic acid

• For the solution of  $H_2L^+$  $H_2L^+ \leftrightarrows HL + H^+$  $HL \leftrightarrows L^- + H^+$ 

Assumption:

 $K_{a1} = 4.69 \times 10^{-3}$  $K_{a2} = 1.79 \times 10^{-10}$ 

since  $K_{a1} >> K_{a2}$ so the dissociation of HL is insignificant comparing with the dissociation of  $H_2L^+$ , which can be treated as monoprotic acid.

• For the solution of L<sup>-</sup>  $L^- + H_2O \rightleftharpoons HL + OH^ K_{b1} = K_w/K_{a2} = 5.48 \times 10^{-5}$  $HL + H_2O \leftrightarrows H_2L^+ + OH^ K_{b2} = K_w/K_{a1} = 2.13 \times 10^{-12}$ 



### Treatment of the intermediates





#### Approximations

$$[H^{+}] = \sqrt{\frac{K_{a1}K_{a2}[HL] + K_{a1}K_{w}}{K_{a1} + [HL]}}$$

• Since HL is week acid/base, the [HL] $\approx$ F (added) then  $[H^+] = \sqrt{\frac{K_{a1}K_{a2}F + K_{a1}K_w}{K_{a1} + F}}$ 

$$[H^{+}] = \sqrt{\frac{K_{a1}K_{a2}F}{K_{a1} + F}}$$

• Assume, F>>K<sub>a1</sub>  $[H^+] = \sqrt{K_{a1}K_{a2}} \implies pH=1/2$ 

$$pH=1/2(pK_{a1}+pK_{a2})$$



## Polyprotic acids and bases

 Treatments of polyprotic acid and base are similar to that of diprotic acid and base

 $\begin{array}{l} H_{3}A\leftrightarrows H_{2}A^{-} + H^{+} \\ H_{2}A^{-} \leftrightarrows HA^{2-} + H^{+} \\ HA^{2-} \leftrightarrows A^{3-} + H^{+} \\ A^{3-} + H_{2}O \leftrightarrows HA^{2-} + OH^{-} \\ HA^{2-} + H_{2}O \leftrightarrows H_{2}A^{-} + OH^{-} \\ HA^{2-} + H_{2}O \leftrightarrows H_{3}A + OH^{-} \end{array}$ 

$$K_{a1}$$
  
 $K_{a2}$   
 $K_{a3}$   
 $K_{b1}=K_w/K_{a3}$   
 $K_{b2}=K_w/K_{a2}$   
 $K_{b3}=K_w/K_{a1}$ 

Only deal with immediate neighbors



#### Only deal with immediate neighbors







#### Only deal with immediate neighbors

 H<sub>2</sub>A<sup>-</sup> and HA<sup>2-</sup> are treated as the intermediate form for a diprotic acid.





#### **Only deal with immediate neighbors**





# Principal species – dominate type of species at certain pH

At the time  $[H_3A] = [H_2A^-] = 1/2F$ 

 $H_3A \leftrightarrows H_2A^- + H_+$ beginF00end0.5F0.5Fx

$$K \approx K_{a1} = \frac{[H^+]0.5F}{0.5F}$$
$$K \approx [H^+] \Rightarrow K = K$$

$$K = [H^+] \Longrightarrow pH = pK$$

pH<pK  $\Rightarrow$  H<sub>3</sub>A is the dominate species; pH>pK  $\Rightarrow$  H<sub>2</sub>A<sup>-</sup> is the dominate species.



 $\mathbf{K}_{a1}$ 

#### Principal species – dominate type of species at certain pH







### **Composition of solution**

• General form of fraction for the polyprotic acid H<sub>n</sub>A:









# Titration

- Increments of reagent solution (titrant) are added to analyte until the reaction is completed
  - Titrant (know concentration)
  - Analyte (unknown)
  - End point: equivalence point the quantity of added titrant is the exact amount necessary for stoichiometric reaction with the analyte

Example: using known  $H_2SO_4$  to titrate unknown KOH - $H_2SO_4$  +2 KOH  $\rightarrow$  2 $H_2O$  +  $K_2SO_4$ at end point one mole of  $H_2SO_4$  reacts with 2 mole of KOH



### Detection end point

 Detection of end point: indication – chemical, electrochemical, spectroscopic – means to mark change in a physical property of the solution

Example: HOOC-COOH+  $2 \text{ MnO}_4^- + 6 \text{ H}^+ \rightarrow 10 \text{ CO}_2 + 2 \text{ Mn}^{2+} + \text{H}_2\text{O}_2$ (oxalic acid, analyte) (titrant, pink)



# Terminology

- Titrant
- Analyte
- End point
- Indicator: compound with a physical property (color) that changes abruptly near the equivalence point.
- Titration error
- Blank titration
- Primary standard: pure and stable reagent (>99.9%) which can be accurately weighted to make titrant.
- Standardization: use primary standard solution to determine the non primary standard standard solution.
- Direct titration: titrate the analyte until end point.
- Back titration: add excess amount of one standard solution and use the second standard solution to titrate the excess amount of the first standard solution – slow reaction with analyte or no clear indicator



### **Titration calculation**

the quantity of added titrant is the exact amount necessary for stoichiometric reaction with the analyte - relate the mole of titrate to the mole of analyte Example: use 0.7344 M HCI to titrate 1.372 g of the mixture of  $Na_2CO_3$  and  $NaHCO_3$ , 29.11 ml of HCl was consumed.  $Na_2CO_3 + 2HCI \leftrightarrows 2 NaCI + H_2O + CO_2\uparrow$ NaHCO<sub>3</sub> + HCI \(\Gamma NaCI + H\_2O + CO\_2\uparrow at the end point, all Na become NaCl 1 mole  $Na_2CO_3$  reacts with 2 mole HCl 1 mole  $NaHCO_3$  reacts with 1 mole HCl Total HCl consumed 0.7344 x 29.11x10<sup>-3</sup>=0.02138 M Assume x gram of  $Na_2CO_3$  in the mixture, then there is 1.372-x gram of NaHCO<sub>3</sub> Mole of  $Na_2CO_3$ : x/105.99(molecular weight) Mole of NaHCO3: (1.372-x)/84.01 thus: 2 x mole of  $Na_2CO_3 + mole of NaHCO_3 = mole of HCI 2 x (x/105.99) + (1.372-x)/84.01 = 0.02138$ x =  $0.724 \text{ g} \Rightarrow 0.724 \text{ g} \text{ Na}_{2}^{2}\text{CO}_{3}$  and 1.372-0.724 = 0.648 g NaHCO<sub>3</sub>







## **Titration curve**

- Change of the indication signal – the concentration of one reactant (potential, pH, optical absorption..) with the amount of titrant
  - Understand the chemistry during the titration
  - The influence of the conditions to the titration e.g. pH to the sharp end point.





# Types of Titration

- Acid-base
- Redox (reduction oxidation, electrochemical)
- Complex formation (EDTA)
- Precipitation

## **Precipitation Titration**

- K<sub>sp</sub> influence the sharpness of the end point and accuracy of precipitation titration, the larger K<sub>sp</sub> the better.
- Ion selective electrodes are usually used to detect the change of one reactant





#### Example of Precipitation Titration

- Using AgNO<sub>3</sub> solution to titrate the solution containing KI and KCI
- Titration of a mixture, less soluble precipitate (larger K<sub>sp</sub>) forms first.
- K<sub>sp1</sub> has to be sufficiently different in order to separate the two different precipitates



#### Example of Precipitation Titration

- $Ag^+ + I^- \rightarrow AgI$   $K_{SP}(AgI)=[Ag^+][I^-] \Rightarrow [Ag^+]=K_{sp}(AgI)/[I^-]$  $[I^-] = initial concentration (unknown) - [Ag] added$
- Ag<sup>+</sup> + Cl<sup>-</sup>→ AgCl K<sub>SP</sub>(AgCl)=[Ag<sup>+</sup>][Cl<sup>-</sup>] ⇒ [Ag<sup>+</sup>]=K<sub>sp</sub>(AgI)/[Cl] [Cl] = initial concentration (unknown) – [Ag] added-[l<sup>-</sup>]
- Near the end point of I<sup>-</sup>, co precipitation may happen



### **Titration Curve**









# **Buffered Solution**

- A buffered solution resists changes in pH when acids or bases are added or when dilution occurs.
- The buffer is made of the mixture of acid and its conjugate base.



# What happen if a weak acid is mixed with its conjugate base ?

• the moles of acid and conjugate base in the solution will remain close to the amounts added, because of Le Châtelier's principal.

 $\begin{array}{l} \mathsf{HA}\leftrightarrows\mathsf{H}^{+}+\mathsf{A}^{-}\\ \mathsf{A}^{-}+\mathsf{H}_{2}\mathsf{O}\leftrightarrows\mathsf{HA}+\mathsf{OH}^{-} \end{array}$ 

- HA dissociates very little and adding A<sup>-</sup> will make the equilibrium move to right side.
- A<sup>-</sup> does not react with water much and adding HA will make the equilibrium move to right side



#### Henderson-Hasselbalch Equation

• The pH of the buffer - the central equation to treat buffer

 $HA \leftrightarrows H^+ + A^- \qquad K_a$  $K_a = [H^+][A^-]/[HA]$  $\log K_a = \log [H^+] + \log \{[A^-]/[HA]\}$ 

$$pH = pK_a + \log\{[A^-]/[HA]\}$$



#### The same relation, different expression

•  $A^- + H_2O \leftrightarrows HA + OH^ K_b$ 

$$\begin{split} & K_{b} = [HA][OH^{-}]/[A^{-}] \\ & \log [K_{b} = \log [OH^{-}] + \log [HA]/[A^{-}] \\ & [OH^{-}] = K_{w}/[H^{+}] \\ & \log K_{b} = \log K_{w} - \log [H^{+}] + \log [HA]/[A^{-}] \\ & -\log [H^{+}] = \log K_{b} - \log K_{w} - \log [HA]/[A^{-}] \\ & -\log [H^{+}] = \log K_{w}/K_{b} + \log [A^{-}]/[HA] \end{split}$$

```
pH = pK_a + log [A^-]/[HA]
```



# **Diprotic Buffers**

 A buffer made from a diprotic (H<sub>2</sub>L) or polyprotic (H<sub>n</sub>L) acid

 $\begin{array}{ll} H_2L \leftrightarrows HL^{-} + H^+ & K_{a1} \\ HL^{-} \leftrightarrows L^{2-} + H^+ & K_{a2} \end{array}$ 

Two Henderson-Hasselbalch equations, they are both true in the same solution

 $pH=pK_{a1}+log([HL^{-}]/[H_{2}L])$  $pH=pK_{a2}+log([L^{2-}]/[HL^{-}])$ 







| Table 10-1 | Effect of [A <sup>-</sup> ]/[HA] |
|------------|----------------------------------|
| on pH      |                                  |

| [A <sup>-</sup> ]/[HA] | рН           |
|------------------------|--------------|
| 100:1                  | $pK_a + 2$   |
| 10:1                   | $pK_{a} + 1$ |
| 1:1                    | $pK_a$       |
| 1:10                   | $pK_{a} - 1$ |
| 1:100                  | $pK_a - 2$   |

