Systematic Treatment of
 Equilibrium

Systematic Treatment of Equilibrium

- Methodology to deal with chemical equilibria systematically: figure out as many independent algebraic equations as there are unknown species
- Independent algebraic equations:
- chemical equilibrium conditions
- mass balance
- charge balance

Chemical Equilibrium

Example: dissolve $\mathrm{K}_{3} \mathrm{PO}_{4}$ into water
-Dissociation reaction

$$
\mathrm{K}_{3} \mathrm{PO}_{4} \leftrightarrows 3 \mathrm{~K}^{+}+\mathrm{PO}_{4}{ }^{3-}
$$

- Other reactions with water

$$
\begin{aligned}
& \mathrm{PO}_{4}^{3-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{HPO}_{4}^{2-}+\mathrm{OH}^{-} \\
& \mathrm{HPO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{OH}^{-}
\end{aligned}
$$

-In aqueous solutions, always self-ionization of water

$$
\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{H}^{+}+\mathrm{OH}^{-}
$$

Charge Balance

- The statement of electroneutrality: The sum of the positive charges in solution equals the sum of the negative charges in solution - to make the electroneutrality of the solution.
- Creation of one positive charge (ion) must accompany the creation of one negative charge

Charge balance

Example: dissolve $\mathrm{K}_{3} \mathrm{PO}_{4}$ into water
-Dissociation reaction

$$
\mathrm{K}_{3} \mathrm{PO}_{4} \leftrightarrows 3 \mathrm{~K}^{1+}+\mathrm{PO}_{4}^{3-}
$$

-Other reactions with water

$$
\begin{aligned}
& \mathrm{PO}_{4}{ }^{3-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{HPO}_{4}^{2-}+\mathrm{OH}^{1-} \\
& \mathrm{HPO}_{4}{ }^{2-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{H}_{2} \mathrm{PO}_{4}^{1-}+\mathrm{OH}^{1-}
\end{aligned}
$$

-In aqueous solutions, always self-ionization of water

$$
\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{H}^{1+}+\mathrm{OH}^{1-}
$$

Charge balance

- Example: dissolve $\mathrm{K}_{3} \mathrm{PO}_{4}$
$\mathrm{K}_{3} \mathrm{PO}_{4} \leftrightarrows 3 \mathrm{~K}^{1+}+\mathrm{PO}_{4}{ }^{3-}$
$\mathrm{PO}_{4}{ }^{3-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{HPO}_{4}{ }^{2-}+\mathrm{OH}^{1-}$
$\mathrm{HPO}_{4}{ }^{2-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{H}_{2} \mathrm{PO}_{4}{ }^{1-}+\mathrm{OH}^{1-}$
$\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{H}^{1+}+\mathrm{OH}^{1-}$
- $\quad \sum($ positive charge $)=\sum$ (negative charge $)$
- Total positive charge $=\left[\mathrm{K}^{+}\right]+\left[\mathrm{H}^{+}\right]$

Total negative charge $=\left[\mathrm{OH}^{-}\right]+\left[\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}\right]+2\left[\mathrm{HPO}_{4}{ }^{2-}\right]+3\left[\mathrm{PO}_{4}{ }^{3-}\right]$ $\left[\mathrm{K}^{+}\right]+\left[\mathrm{H}^{+}\right] \equiv\left[\mathrm{OH}^{-}\right]+\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]+2\left[\mathrm{HPO}_{4}{ }^{2-}\right]+3\left[\mathrm{PO}_{4}{ }^{3-}\right]$

Net charge in the solution $=0$

Mass Balance or material balance

- Statement of the conservation of matter: the quantity of all species in a solution containing a particular atom (or group of atoms) must equal to amount of that atom (or group) delivered to the solution
- Chemical process can not produce new kinds of atom.

Mass Balance or material balance

Example: dissolve $\mathrm{K}_{3} \mathrm{PO}_{4}$ into water
-Dissociation reaction

$$
\mathrm{K}_{3} \mathrm{PO}_{4} \leftrightarrows 3 \mathrm{~K}^{+}+\mathrm{PO}_{4}{ }^{3-}
$$

-Other reactions with water

$$
\begin{aligned}
& \mathrm{PO}_{4}^{3-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{HPO}_{4}^{2-}+\mathrm{O} \\
& \mathrm{HPO}_{4}{ }^{2-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+
\end{aligned}
$$

-In aqueous solutions, always self-ionization of water

Mass Balance or material balance

- Example: dissolve $\mathrm{K}_{3} \mathrm{PO}_{4}$

$$
\mathrm{K}_{3} \mathrm{PO}_{4} \leftrightarrows 3 \mathrm{~K}^{+}+\mathrm{PO}_{4}{ }^{3^{-}}
$$

$$
\mathrm{PO}_{4}^{3-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{HPO}_{4}{ }^{2-}+\mathrm{OH}^{-}
$$

$$
\mathrm{HPO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{OH}^{-}
$$

$$
\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{H}^{+}+\mathrm{OH}^{-}
$$

- The amount that $\mathrm{K}_{3} \mathrm{PO}_{4}$ puts into the solution:

$$
\left[\mathrm{K}_{3} \mathrm{PO}_{4}\right]=1 / 3[\underbrace{\left.\mathrm{~K}^{+}\right]=\left[\mathrm{PO}_{4}{ }^{3-}\right]+\left[\mathrm{HPO}_{4}{ }^{2-}\right]+\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]}_{\text {All } \mathrm{K}^{+} \text {species }}
$$

What about activity?

- In concentrated solutions, shouldn't activity replace concentration?
- Why?
- Concentration rather than activity is used in both mass balance and charge balance.
- Charge Balance:
- Charge contributed by $0.1 \mathrm{M} \mathrm{H}^{+}$is exactly 0.1 M
- Mass Balance:
- Concentration of each species counts exactly as \# of atoms

Steps to treat the equilibrium

- Step 1: write all possible reactions
- Step 2: write charge balance equations
- Step 3: write mass balance equations
- Step 4: write the equilibrium constant for each chemical reaction - only time activity MAY be used.
- Step 5: count the numbers of equation and unknowns (concentration of species)
- Step 6: solve the equation to find out unknowns

Example: dissolve $\mathrm{K}_{3} \mathrm{PO}_{4}$

- Step 1: All possible reactions $\mathrm{K}_{3} \mathrm{PO}_{4} \leftrightarrows 3 \mathrm{~K}^{+}+\mathrm{PO}_{4}{ }^{3-}$
$\begin{array}{lll}\mathrm{PO}_{4}{ }^{3-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{HPO}_{4}{ }^{2-}+\mathrm{OH}^{-} & & \mathrm{K}_{2} \\ \mathrm{HPO}_{4}{ }^{2-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{OH}^{-} & \mathrm{K}_{3} & \\ \mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{H}^{+}+\mathrm{OH}^{-} & \mathrm{K}_{\mathrm{w}} & \end{array}$
- Step 2: Charge balance
$\left[\mathrm{K}^{+}\right]+\left[\mathrm{H}^{+}\right] \equiv\left[\mathrm{OH}^{-}\right]+\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]+2\left[\mathrm{HPO}_{4}{ }^{2-}\right]+3\left[\mathrm{PO}_{4}{ }^{3-}\right]$
- Step 3: Mass balance $\left[\mathrm{K}_{3} \mathrm{PO}_{4}\right]=1 / 3\left[\mathrm{~K}^{+}\right]$
$\left[\mathrm{K}_{3} \mathrm{PO}_{4}\right]=\left[\mathrm{PO}_{4}^{3-}\right]+\left[\mathrm{HPO}_{4}^{2-}\right]+\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]$

Example: dissolve $\mathrm{K}_{3} \mathrm{PO}_{4}$

- Write the equilibrium constant for each chemical reaction - only here is when activity MAY be used.
$\mathrm{K}_{1}=\left\{\left[\mathrm{K}^{+}\right]^{3} \bigcirc_{\mathrm{k}}{ }^{3} \times\left[\mathrm{PO}_{4}{ }^{3-}\right]\right.$ ©PO $\left._{4}\right\} /\left[\mathrm{K}_{3} \mathrm{PO}_{4}\right]$
$\mathrm{K}_{2}=\left\{\left[\mathrm{HPO}_{4}{ }^{2-}\right]\right.$ © $^{2} \mathrm{HPO}_{4}{ }^{2-} \times[\mathrm{OH}]$ ©oн $\} /\left[\mathrm{PO}_{4}{ }^{3-}\right] \mathrm{CPO}_{4}$
$\mathrm{K}_{3}=\left\{\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]\right.$© $_{2} \mathrm{PO}_{4}^{-} \times[\mathrm{OH}]$ ©он $\} /\left[\mathrm{HPO}_{4}{ }^{2-}\right]$ © $\mathrm{HPO}_{4}{ }^{2-}$
$\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right] \bigcirc_{\mathrm{H}}[\mathrm{OH}]$ © $_{\mathrm{OH}}$
In dilute solutions, © can be omitted (© $\cong 1$)
- Count the numbers of equation and unknowns (concentration of species)

7 unknown: $\left[\mathrm{K}^{+}\right],\left[\mathrm{H}^{+}\right],\left[\mathrm{OH}^{-}\right],\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right],\left[\mathrm{HPO}_{4}{ }^{2-}\right],\left[\mathrm{PO}_{4}{ }^{3-}\right],\left[\mathrm{K}_{3} \mathrm{PO}_{4}\right]$
7 equations: $\mathrm{K}_{1}, \mathrm{~K}_{2}, \mathrm{~K}_{3}, \mathrm{~K}_{\mathrm{w}}$, one charge balance and 2 mass balances

- Solve the equation to find out unknowns

In general, the solubility of MA is high, if A is from a weak acid

Coupled Equilibria

- The product of one reaction is the reactant of another or others
Example 1:
$\mathrm{K}_{3} \mathrm{PO}_{4} \leftrightarrows 3 \mathrm{~K}^{+}+\mathrm{PO}_{4}^{3-}$
$\mathrm{PO}_{4}{ }^{3-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{HPO}_{4}{ }^{2-}+\mathrm{OH}^{-}$
$\mathrm{HPO}_{4}{ }^{2-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{OH}^{-}$
$\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{H}^{+}+\mathrm{OH}^{-}$

$$
\begin{aligned}
& \mathrm{K}_{1} \\
& \mathrm{~K}_{2} \\
& \mathrm{~K}_{3} \\
& \mathrm{~K}_{\mathrm{w}}
\end{aligned}
$$

Example 2:

$$
\begin{array}{ll}
\mathrm{CaF}_{2}(\mathrm{~S}) \leftrightarrows \mathrm{Ca}^{2+}+2 \mathrm{~F}^{-} & \mathrm{K}_{\mathrm{sp}}=3.9 \times 10^{-11} \\
\mathrm{~F}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{HF}+\mathrm{OH}^{-} & \mathrm{K}_{\mathrm{b}}=1.5 \times 10^{-11} \\
\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{H}^{+}+\mathrm{OH}^{-} & \mathrm{K}_{\mathrm{w}}=1.0 \times 10^{-14}
\end{array}
$$

Acids and Bases

Weak Acid/Base Equilibria

pH Revisited: Acids and Bases

- Remember $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$?

$$
\begin{aligned}
& \mathrm{pH} \text { is }-\log A_{\mathrm{H}^{+}}=-\log \left[\mathrm{H}^{+}\right] \varrho_{\mathrm{H}} \\
& \mathrm{~K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right] \oplus_{\mathrm{H}}[\mathrm{OH}] \varrho_{\mathrm{OH}}
\end{aligned}
$$

- Strong acids or bases -> complete dissociation
- Weak acids or bases -> exist in equilibrium

$$
\begin{array}{ll}
-\mathrm{HA} \leftrightarrows \mathrm{H}^{+}+\mathrm{A}^{-} & K_{a}=\frac{\left[\mathrm{H}^{+}\right]\left[A^{-}\right]}{[H A]} \\
-\mathrm{B}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{BH}^{+}+\mathrm{OH}^{-} & K_{b}=\frac{\left[B H^{+}\right]\left[\mathrm{OH}^{-}\right]}{[B]}
\end{array}
$$

- Formal concentration (F) : the total number of moles of a compound dissolved in a liter.

Determining pH: Weak acids

- Systematic treatment: $\mathrm{HA} \leftrightarrows \mathrm{H}^{+}+\mathrm{A}^{-}$
- Charge balance: $\left[\mathrm{H}^{+}\right]=\left[\mathrm{A}^{-}\right]+\left[\mathrm{OH}^{-}\right]$
- Mass balance: F = [A-] + [HA]
- Equilibria:

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{a}}=\left[\mathrm{H}^{+}\right][\mathrm{A}] /[\mathrm{HA}] \\
& \mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]
\end{aligned}
$$

- 4 unknowns [$\mathrm{A}-],[\mathrm{HA}],\left[\mathrm{H}^{+}\right],\left[\mathrm{OH}^{-}\right]$and 4 equations

Determining pH: Weak bases

- Systematic treatment: $\mathrm{B}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{BH}^{+}+\mathrm{OH}^{-}$
- Charge balance: $\left[\mathrm{BH}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
- Mass balance: $\mathrm{F}=\left[\mathrm{BH}^{+}\right]+[\mathrm{B}]$
- Equilibria:
$\mathrm{K}_{\mathrm{b}}=\left[\mathrm{BH}^{+}\right][\mathrm{OH}-][\mathrm{B}]$
$K_{\mathrm{w}}=\left[\mathrm{H}^{*}\right][\mathrm{OH}-]$ (all OH- comes from B)
-3 unknowns $[\mathrm{B}],\left[\mathrm{BH}^{+}\right],\left[\mathrm{OH}^{-}\right]$and 3 equations

Weak acid/base problems

- Weak acid problem: $\mathrm{HA} \leftrightarrows \mathrm{H}^{+}+\mathrm{A}^{-}$

$$
\frac{\left[H^{+}\right]\left[A^{-}\right]}{[H A]}=\frac{x^{2}}{F-x}=K_{a}
$$

- Weak bass problem: $\mathrm{B}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{BH}^{+}+\mathrm{OH}^{-}$

$$
\frac{\left[B H^{+}\right]\left[\mathrm{OH}^{-}\right]}{[B]}=\frac{x^{2}}{F-x}=K_{b}
$$

The dependence of solubility on pH

Figure 9-3 pH dependence of the concentration of $\mathrm{Ca}^{2+}, \mathrm{F}^{-}$, and HF in a saturated solution of CaF_{2}. As the pH is lowered, H^{+}reacts with F^{-}to make HF , and the concentration of Ca^{2+} increases. Note the logarithmic ordinate.

Polyprotic Acid-Base Equilibria

Polyprotic Acids and Bases

- Can donate (acid) or accept (base) more than one proton.
- Diprotic (2), triprotic (3), ...
amino acid

- A molecule that can both donate and accept a proton is call "amphiprotic"

Diprotic acid and base (amino acid)

- Diprotic acid:
$\mathrm{H}_{2} \mathrm{~L}^{+} \leftrightarrows \mathrm{HL}+\mathrm{H}^{+}$
$\mathrm{HL} \leftrightarrows \mathrm{L}^{-}+\mathrm{H}^{+}$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{a} 1} \\
& \mathrm{~K}_{\mathrm{a}}
\end{aligned}
$$

- Diprotic base
$\mathrm{L}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{HL}+\mathrm{OH}^{-}$
$\mathrm{K}_{\mathrm{b} 1}$
$\mathrm{HL}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{H}_{2} \mathrm{~L}^{+}+\mathrm{OH}^{-} \quad \mathrm{K}_{\mathrm{b} 2}$

Diprotic acid and base (amino acid)

- Diprotic acid: $\mathrm{H}_{2} \mathrm{~L}^{+} \leftrightarrows \mathrm{HL}+\mathrm{H}^{+}$ $\mathrm{HL} \leftrightarrows \mathrm{L}^{-}+\mathrm{H}^{+}$
- Diprotic base
$\mathrm{L}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{HL}+\mathrm{OH}^{-}$ $\mathrm{HL}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{H}_{2} \mathrm{~L}^{+}+\mathrm{OH}^{-}$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{a} 1} \cdot \mathrm{~K}_{\mathrm{b} 2}=\mathrm{K}_{\mathrm{w}} \\
& \mathrm{~K}_{\mathrm{a} 2} \cdot \mathrm{~K}_{\mathrm{b} 1}=\mathrm{K}_{\mathrm{w}}
\end{aligned}
$$

Dissociation of diprotic acid

- For the solution of $\mathrm{H}_{2} \mathrm{~L}^{+}$
$\mathrm{H}_{2} \mathrm{~L}^{+} \leftrightarrows \mathrm{HL}+\mathrm{H}^{+}$

$$
\mathrm{HL} \leftrightarrows \mathrm{~L}^{-}+\mathrm{H}^{+}
$$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{a} 1}=4.69 \times 10^{-3} \\
& \mathrm{~K}_{\mathrm{a} 2}=1.79 \times 10^{-10}
\end{aligned}
$$

Assumption:
since $\mathrm{K}_{\mathrm{a} 1} \gg \mathrm{~K}_{\mathrm{a} 2}$ the dissociation of HL is insignificant compared to the dissociation of $\mathrm{H}_{2} \mathrm{~L}^{+}$.
$\therefore \mathrm{H}_{2} \mathrm{~L}^{+}$can be treated as a monoprotic acid: only need $\mathrm{K}_{\mathrm{a} 1}$

Dissociation of diprotic base

- For the solution of L^{-}
$\mathrm{L}^{-}+\mathrm{H}_{2} \mathrm{O} \underset{\mathrm{HL}}{ }+\mathrm{OH}^{-}$

$$
\mathrm{K}_{\mathrm{b} 1}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{a} 2}=5.48 \times 10^{-5}
$$

$\mathrm{HL}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{H}_{2} \mathrm{~L}^{+}+\mathrm{OH}^{-}$
$\mathrm{K}_{\mathrm{b} 2}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{a} 1}=2.13 \times 10^{-12}$

Assumption:
since $\mathrm{K}_{\mathrm{b} 1} \gg \mathrm{~K}_{\mathrm{b} 2}$ the reaction of HL with $\mathrm{H}_{2} \mathrm{O}$ (hydrolysis) is insignificant compared to the reaction of $\mathrm{L}^{-} \cdot$ with $\mathrm{H}_{2} \mathrm{O}$.
$\therefore \mathrm{L}^{-}$can be treated as monobasic: only need $\mathrm{K}_{\mathrm{b} 1}$

What happens to HL - intermediate form

- Say, dissolve 0.050 M of HL into water Dissociation (acid):
$\mathrm{K}_{\mathrm{a}}=\mathrm{K}_{\mathrm{a} 2}=1.79 \times 10^{-10}$

Hydrolysis (base):

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b} 2}= 2.13 \times 10^{-12} \\
& \mathrm{HL}+\mathrm{H}_{2} \mathrm{O}^{-} \leftrightarrows \mathrm{H}_{2} \mathrm{~L}^{+}+\mathrm{OH}^{-}
\end{aligned}
$$

- The two reactions are related and proceed to nearly equal extent, so even though $K_{a}>K_{b}$, the hydrolysis reaction cannot be ignored.
- Resort to systematic treatment of equilibrium

Treatment of the intermediates

- Systematic treatment:

```
\(\mathrm{HL} \leftrightarrows \mathrm{H}^{+}+\mathrm{L}^{-}\)
\(\mathrm{HL}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{H}_{2} \mathrm{~L}^{+}+\mathrm{OH}^{-}\)
\(\mathrm{H}_{2} \mathrm{~L}^{+} \leftrightarrows \mathrm{HL}+\mathrm{H}^{+}\)
```

Charge balan $\left.\Phi \Phi^{+}\right]+\left[\mathrm{H}_{2} \mathrm{~L}^{+}\right]=\left[\mathrm{L}^{-}\right]+\left[\mathrm{OH}^{-}\right] \Rightarrow\left[\mathrm{H}_{2} \mathrm{~L}^{+}\right]-\left[\mathrm{L}^{-}\right]+\left[\mathrm{H}^{+}\right]-\left[\mathrm{OH}^{-}\right]$

$$
\begin{aligned}
& K_{a 2}=\frac{\left[\mathrm{H}^{+}\right]\left[L^{-}\right]}{[H L]} \Rightarrow\left[L^{-}\right]=\frac{[H L] K_{a 2}}{\left[\mathrm{H}^{+}\right]} \\
& K_{b 2}=\frac{\left[\mathrm{H}_{2} L^{+}\right]\left[\mathrm{OH}^{-}\right]}{[H L]} \Rightarrow\left[\mathrm{H}_{2} L^{+}\right]=\frac{[H L] K_{b 2}}{[\mathrm{OH}]}=[\mathrm{HL}]\left[\mathrm{H}^{+}\right] \frac{K_{b 2}}{K_{w}} \\
& K_{a 1} K_{b 2}=K_{w} \Rightarrow K_{a 1}=\frac{K_{w}}{K_{b 2}} \quad\left[\mathrm{OH}^{-}\right]=\frac{K_{w}}{\left[\mathrm{H}^{+}\right]}- \\
& {\left[\mathrm{H}_{2} L^{+}\right]=[\mathrm{HL}]\left[\mathrm{H}^{+}\right] \frac{K_{b 2}}{K_{w}} \Rightarrow\left[\mathrm{H}_{2} L^{+}\right]=\frac{[\mathrm{HL}]\left[\mathrm{H}^{+}\right]}{K_{a 1}}}
\end{aligned}
$$

Treatment of the intermediates

$$
\frac{[H L]\left[H^{+}\right]}{K_{a 1}}-\frac{[H L] K_{a 2}}{\left[H^{+}\right]}+\left[H^{+}\right]-\frac{K_{w}}{\left[H^{+}\right]}=0
$$

$$
\frac{[H L]\left[H^{+}\right]^{2}}{K_{a 1}}-[H L] K_{a 2}+\left[H^{+}\right]^{2}-K_{w}=0
$$

$$
\left[H^{+}\right]^{2}\left(\frac{[H L]}{K_{a 1}}+1\right)=K_{a 2}[H L]+K_{w}
$$

$$
\left[H^{+}\right]=\sqrt{\frac{K_{a 1} K_{a 2}[H L]+K_{a 1} K_{w}}{K_{q 1}+[H L]}}
$$

No assumption was made (two

unknowns

Properties of Umass Boston

- Mass Balance:

$$
\begin{aligned}
F & =[F L]+\left[L^{-}\right]+\left[H_{2} L^{+}\right] \\
& =[H L]+\frac{[H L] k_{a 2}}{\left[H^{+}\right]}+\frac{[H L]\left[H^{+}\right]}{k_{a 1}} \\
{[H L] } & =\frac{F k_{a 2}\left[H^{+}\right]}{k_{a 1}\left[H^{+}\right]+k_{a 1} k_{a 2}+\left[H^{+}\right]^{2}} \\
{\left[H^{+}\right] } & =\sqrt{\frac{K_{a 1} K_{a 2}[H L]+K_{a 1} K_{w}}{K_{a 1}+[H L]}}
\end{aligned}
$$

$k_{a l}\left[H^{+}\right]^{4}+\left(k_{a 1}^{2}+F k_{a 2}\right)\left[H^{+}\right]^{3}+\left(k_{a 1}{ }^{2} k_{w}-k_{1} k_{w}\right)\left[H^{+}\right]^{2}-\left(k_{a 1} k_{a 2}{ }^{2}+k_{a l}{ }^{2} k_{w}\right)\left[H^{+}\right]+k_{a 1}{ }^{2} k_{a 2} k_{w}=0$

Approximations

$$
\left[H^{+}\right]=\sqrt{\frac{K_{a 1} K_{a 2}[H L]+K_{a 1} K_{w}}{K_{a 1}+[H L]}}
$$

- Since HL is weak acid/base, the [HL] $\approx \mathrm{F}$ (added) then

$$
\left[H^{+}\right]=\sqrt{\frac{K_{01} K_{a 2} F+K_{01} K_{w}}{K_{a 1}+F}}
$$

- Assume, $\mathrm{K}_{\mathrm{a} 2}[\mathrm{HL}] \gg \mathrm{K}_{\mathrm{w}}$, then

$$
\left[H^{+}\right]=\sqrt{\frac{K_{a 1} K_{a 2} F}{K_{a 1}+F}}
$$

- Assume, $\mathrm{F} \gg \mathrm{K}_{\mathrm{a} 1}$

$$
\left[H^{+}\right]=\sqrt{K_{a 1} K_{a 2}} \quad \Longleftrightarrow \quad \mathrm{pH}=1 / 2\left(\mathrm{pK}_{\mathrm{a} 1}+\mathrm{pK}_{\mathrm{a} 2}\right)
$$

Summary for diprotic acid

- Starting material (Page 211)
$-\mathrm{H}_{2} \mathrm{~A}$
- Treat as monoprotic acid, $\mathrm{K}_{\mathrm{a}}=\mathrm{K}_{\mathrm{a} 1}$, ignore $\mathrm{K}_{\mathrm{a} 2}$
- Use $\mathrm{K}_{\mathrm{a} 2}$ to solve for [$\left.\mathrm{A}^{2-}\right]$.
$-\mathrm{HA}^{-}$
- Use approximation $\left[\mathrm{HA}^{-}\right] \approx F$
- Use $K_{a 1}$ and $K_{a 2}$ for $\left[\mathrm{H}_{2} \mathrm{~A}\right]$ and $\left[\mathrm{A}^{2-}\right]$
$-A^{2-}$
- Treat as monobasic, $\mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b} 1}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{a} 2}$, ignore $\mathrm{k}_{\mathrm{b} 2}$
- Use $K_{b 2}$ to solve for $\left[\mathrm{H}_{2} A\right]$.

