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Objectives

Well understand the properties of light

Well understand the energy levels of
various kinds

Well understand the types of
spectroscopy and their origins

Understand the application of each types
of spectroscopy
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Properties of Light

Light can be considered as particles and waves
The light wave Is electric and magnetic field
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Energy levels of a compound

e Types of energy
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Electrons on the energy state
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The interaction between light and compounds

Electrons can be excited
by the absorption of light
to from the lower energy
level to higher energy
states.

The electrons on higher
energy states will find
their way back to lower
energy states and give
away energy in the
forms of heat (relaxation)
or light (called
Luminescence:
Fluoresecence -rapid
and Phosphoresence -
slow).

Excited vibrational
and rotational

levels of T,
S electronic state
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IC: internal conversion

ISC: intersystem crossing
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Two kinds of techniques

IR VIS uv 4

« To detect the absorption of light: :

. E, - 0
absorption spectroscopy.

— Atomic absorption, change electronic state of T
an atom e.g. from s orbital (ground) to p - —
orbital. ‘

T \-(: Ey = hv, = helk, 2 k
i o S e R T e , T
0 0 ig ,,h'l A N T T
(@) (6 (©) Figure 24-12 Energy-level diagram

showing some of the energy changes
that occur during absorption of infrared
(IR), visible (VIS), and ultraviolet

— Molecular absorption, change a energy state v miuion by « molecuiar specics

of a molecule: electronic (UV-Visible), o fom By et UV
vibrational and rotational transitions (IR). e s o clation.

from £ to £ may occur with visible
radiation instead of UV radiation.
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e To detect the
luminescence of light
(Fluorescence and

Phosphorescence): G
emission spectroscopy LJL i
— By external T e

electromagnetic radiation
source or by
bombardment with
electrons; heating in a
plasma, a flame or an
electric arc; irradiation
with a beam of light.
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Spectrophotometry
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Absorption Spectroscopy

e Single beam absorption spectrophotometry

Wavelength p B |
— selector -0, Sample Ialght
(monochromator) etector

Light
source

- pHh—

e Transmittance and absorbance
Transmittance T: the fraction of the irradiance
(P) of the original light: T=P/P,,

Absorbance A: A=log(P,/P)=-log T

e Bear's law: A=¢bc

Properties of Umass Boston %

LHMASS



Example: Ultraviolet and Visible spectroscopy (UV-visible)
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Example: Ultraviolet and Visible spectroscopy (UV-visible)

Mn(ur) SPECIES IN M ULTIPLY RECHARGEABLE MnD, 703
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Fig. 10. U.v.-visible spectra of soluble Mn{ni) species; solid line for 37% discharge; dashed line for 37% on recharge of 2e capacity of a

CM MnO, electrode
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Standard

1-cm path Micro cells

Cylindrical

1523? 20-mim path Thermal

\
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Analysis using UV-Visible

Bear’s law: A=>¢gbc,
Find the wavelength for

unique and maximum
absorption

Generating calibration
curve

Measure the unknowns

Calculate the
concentration out of
calibration curve
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L uminescence
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L uminescence

e EXxcitation spectrum: variable excitation
wavelength and detect the strength of fix
wavelength of emission light

 Emission spectrum: fix wavelength for
excitation wavelength and detect the full
spectrum of emission light
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Atomic Absorption
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Atomic Spectroscopy

o Sample is vaporized and the substance is
decomposed into atoms in a flame, furnace, or
plasma (when a gas is hot enough e.g. 6000K,
it will contain ions and free electrons). The
concentration and types of atoms in the vapor
are measured by emission or absorption of the
unigue
— Atomic absorption
— Atomic emission
— Atomic fluorescence
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Origin of the atomic spectroscopy
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Figure 28-1 Origin of three sodium
emission lines.
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Atomic spectroscopy
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Atomic Absorption (AA)

Flame
Hollow- | £, R
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Inductively Coupled Plasma (ICP)-

Atomic Emission Spectroscopy

Figure 28-7 Inductively coupled plasma source.
(From V. A. Fassel, Science, 1978, 202, 185.
Reprinted with permission. Copyright 1978 by the
American Association for the Advancement of
Science.)

Radio-frequency

induction coil
il
s
L1
LA
e
I
A
N
=== Tangential
* ﬁ argon plasma
support flow
Sample
aerosol or vapor
in argon

Properties of Umass Boston

74

LHMASS



Infrared Absorption (IR)
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Types of IR spectrometers

* Dispersive Infrared Instrument: double-
beam layout — wavelength by wavelength
with monochromator.

e Fourier Transform Instruments

— Detect all the wavelengths all the time with
Interferometer which produce interference
patterns that contain the infrared spectral
iInformation.
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Interferometer

Beam A’

Stationary

mirror
¢
A
Ay A
/ B
] |- : :
~ B
N\ : =
o Beam splitter
e : A'Y YB Movable
mirror

Sample YY

Detector

Figure 25F-6 Diagram of a Michelson interferometer. A beam from the i ght source at
left is split into two beams by the beam splitter. The two beams travel two separate paths
and converge on the detector. The two beams A’ and B converge in the same region of space
and form an interference pattern. As the movable mirror on the ri ght is moved, the interfer-
ence pattern shifts across the detector and modulates the optical signal. The resulting refer-
ence interferogram is recorded and used as a measure of the power of the incident beam at
all wavelengths. An absorbing sample is then inserted into the beam, and a sample interfer-
ogram is recorded. The two interferograms are used to compute the absorption spectrum of
the sample.

Beam B

Interference between Beam A’ and Beam B

Image at output

Figure 25F-7 A two-dimensional representation of the interference of two monochro-
matic wavefronts of the same frequency. Beam A’ and beam B at the top form the interfer-
ence pattern in the middle, and the two wavefronts constructively and destructively inter-
fere. The image shown at the bottom would appear at the output of the Michelson
interferometer perpendicular to the plane of the two-dimensional interference pattern.
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Advantages of FTIR

Better speed

Sensitivity

Light-gathering power

Accurate wavelength calibration
Simpler mechanical design
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Infrared Absorption Spectroscopy

 Powerful tool for identifying pure organic
and inorganic compounds — qualitative

— IR can excite vibrational and rotational
transitions.

» Less satisfactory for quantitative purpose

Properties of Umass Boston



|| . |
o C=0 overtone : ; 5
' ( ' . _ _ | / : — CH; bend | ‘
o ' _ . - CH, bend (1378)
§ 0.6 A4l | Aldehyde C-H | 001501 R |
B stretch (271&) CH:} bend l
E | _ - | L (1410) |
204 Asym. sp° | \/ Aldehyde C—H { O e S I
& CH,4 stretch ; stretch (2814) 5 9 | |
2974) | \_|! Sym. sp’ CH;CH,CH,C—-H |
CH, stretch  CHj stretch  (2882) C=0 stretch
(2946) | (2902) (175¢)
0.0 : _ s

Figure 26-20 Infrared spectrum for n-butanal (n-butyraldehyde). The vertical scale is plotted as transmittance, as has been common.
practice in the past. The horizontal scale is linear in wavenumbers, which is proportional to frequency and thus energy. Most modern R
spectrometers are capable of providing data plotted as either transmittance or absorbance on the vertical axis and wavenumber or wave-
length on the horizontal axis. IR spectra are usually plotted with frequency increasing from right to left, which is a historical artifact.
Early IR spectrometers produced spectra with wavelength increasing from left to right, which led to an auxiliary frequency scale from
right to left. Note that several of the bands have been labeled with assi gnments of the vibrations that produce the bands. (Data from
NIST Mass Spec Data Center, S.E. Stein, director, “Infrared Spectra” in NIST Chemistry WebBook, NIST Standard Reference Database
Number 69, P .J. Linstrom and W. G. Mallard, Eds. March 2003, National Institute of Standards and Technology, Gaithersburg, MD

20899 [http://webbook.nist.gov].)
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Mass Spectroscopy and
Separation




Separation of charged species
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Electrospra

Liquid from
Mebulizing Cl'romatooraph Electrostatic lonses
gas (My) in focus and collimate ions
Drying gas ; A .\
Skimmear
cones

—
| Nabulizer 107 Pa

Glass

Datector

Dirain —
Collisionally | | | Quadrupole
activated
P P p rat
Sissociation ump  Pump ump  mass separator
occurs batween
(a) capillary and skimmer

74



Electrospray
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Resolving power
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FIGURE 22-1 Pattitioning of a solute
between two liquid phases.

Chromatography
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FIGURE 22-5 The idea behind chromatography: solute A, with a greater affinity than solute B for the
stationary phase, remains on the column longer. Panel f is a reconstruction of the separation of pigments
from red paprika skin from the work of L. Zechmeister in the 1930s. Bands marked by horizontal lines
are different pigments. The lower stationary phase is Ca(OH), and the upper stationary phase is CaCOs.
[Panel f from L. S. Ettre, “The Rebirth of Chromatography 75 Years Ago,” LCGC 2007, 25, 640.]
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RP-HPLC Separation of a Tryptic Digest of BSA
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