- **13-14.** What is the difference between E and E° for a redox reaction? Which one runs down to 0 when the complete cell comes to equilibrium?
 - **13-19.** Suppose that the concentrations of NaF and KCl were each 0.10 M in the cell

$$Pb(s)|PbF_2(s)|F^-(aq)||Cl^-(aq)|AgCl(s)|Ag(s)$$

- (a) Using the half-reactions $2AgCl(s) + 2e^- \rightleftharpoons 2Ag(s) + 2Cl^-$ and $PbF_2(s) + 2e^- \rightleftharpoons Pb(s) + 2F^-$, calculate the cell voltage.
- **(b)** By the reasoning in Figure 13-8, in which direction do electrons flow?
- (c) Now calculate the cell voltage by using the reactions $2Ag^+ + 2e^- \rightleftharpoons 2Ag(s)$ and $Pb^{2+} + 2e^- \rightleftharpoons Pb(s)$. For this part, you will need the solubility products for PbF_2 and AgCl.
- **13-21.** Write a balanced chemical equation (in acidic solution) for the reaction represented by the question mark on the lower arrow. ¹⁸ Calculate E° for the reaction.

- **13-26.** A solution contains 0.100 M Ce³⁺, 1.00×10^{-4} M Ce⁴⁺, 1.00×10^{-4} M Mn²⁺, 0.100 M MnO₄, and 1.00 M HClO₄.
- (a) Write a balanced net reaction that can occur between species in this solution.
- (b) Calculate ΔG° and K for the reaction.
- (c) Calculate *E* for the conditions given.
- (d) Calculate ΔG for the conditions given.
- (e) At what pH would the given concentrations of Ce^{4+} , Ce^{3+} , Mn^{2+} , and MnO_4^- be in equilibrium at 298 K?
- **14-2.** Convert the following potentials. The Ag | AgCl and calomel reference electrodes are saturated with KCl.
- (a) 0.523 V versus S.H.E. = ? versus Ag | AgCl
- (b) -0.111 V versus Ag | AgCl = ? versus S.H.E.
- (c) -0.222 V versus S.C.E. = ? versus S.H.E.
- (d) 0.023 V versus Ag | AgCl = ? versus S.C.E.
- (e) -0.023 V versus S.C.E. = ? versus Ag | AgCl
- 14-6. A cell was prepared by dipping a Cu wire and a saturated calomel electrode into 0.10 M CuSO₄ solution. The Cu wire was attached to the positive terminal of a potentiometer and the calomel electrode was attached to the negative terminal.
- (a) Write a half-reaction for the Cu electrode.
- **(b)** Write the Nernst equation for the Cu electrode.
- (c) Calculate the cell voltage.

14-8. A 10.0-mL solution of 0.050 0 M AgNO₃ was titrated with 0.025 0 M NaBr in the cell

S.C.E.
$$\parallel$$
 titration solution \mid Ag(s)

Find the cell voltage for 0.1 and 30.0 mL of titrant.

14-33. A cyanide ion-selective electrode obeys the equation

$$E = constant - 0.059 16 \log[CN^{-}]$$

The potential was -0.230 V when the electrode was immersed in 1.00 mM NaCN.

- (a) Evaluate the constant in the equation.
- (b) Using the result from part (a), find [CN $^-$] if E = -0.300 V.
- (c) Without using the constant from part (a), find $[CN^-]$ if E = -0.300 V.
- **14-34.** By how many volts will the potential of an ideal Mg^{2+} ion-selective electrode change if the electrode is removed from 1.00 \times 10^{-4} M MgCl₂ and placed in 1.00 \times 10^{-3} M MgCl₂ at 25°C?