- **8-26.** Describe how to prepare 100 mL of 0.200 M acetate buffer, pH 5.00, starting with pure liquid acetic acid and solutions containing ~3 M HCl and ~3 M NaOH.
- 9-4. Consider the diprotic acid H_2A with $K_1 = 1.00 \times 10^{-4}$ and $K_2 = 1.00 \times 10^{-8}$. Find the pH and concentrations of H_2A , HA^- , and A^{2-} in (a) 0.100 M H_2A ; (b) 0.100 M NaHA; (c) 0.100 M Na₂A.
- 9-7. Use the method of Box 9-2 to calculate the concentrations of H^+ , H_2A , HA^- , and A^{2-} in 0.001 00 M monosodium oxalate, NaHA.

9-12. Effect of temperature on carbonic acid acidity and the solubility of CaCO₃. Pox 9-1 states that marine life with CaCO₃ shells and skeletons will be threatened with extinction in cold polar waters before that will happen in warm tropical waters. The following equilibrium constants apply to seawater at 0° and 30°C, when concentrations are measured in moles per kilogram of seawater and pressure is in bars:

$$CO_2(g) \rightleftharpoons CO_2(aq)$$
 (A)
$$K_H = \frac{[CO_2(aq)]}{P_{CO_2}} = 10^{-1.2073} \text{ mol kg}^{-1} \text{ bar}^{-1} \text{ at } 0^{\circ}\text{C}$$
$$= 10^{-1.6048} \text{ mol kg}^{-1} \text{ bar}^{-1} \text{ at } 30^{\circ}\text{C}$$

$$CO_2(aq) + H_2O \rightleftharpoons HCO_3^- + H^+$$

$$K_{a1} = \frac{[HCO_3^-][H^+]}{[CO_2(aq)]} = 10^{-6.1004} \text{ mol kg}^{-1} \text{ at } 0^{\circ}\text{C}$$

$$= 10^{-5.8008} \text{ mol kg}^{-1} \text{ at } 30^{\circ}\text{C}$$

$$HCO_3^- \rightleftharpoons CO_3^{2-} + H^+$$
 (C)
 $K_{a2} = \frac{[CO_3^{2-}][H^+]}{[HCO_3^-]} = 10^{-9.3762} \text{ mol kg}^{-1} \text{ at } 0^{\circ}\text{C}$
 $= 10^{-8.8324} \text{ mol kg}^{-1} \text{ at } 30^{\circ}\text{C}$

$$CaCO_3(s, aragonite) \rightleftharpoons Ca^{2+} + CO_3^{2-}$$
 (D)
 $K_{sp}^{arg} = [Ca^{2+}][CO_3^{2-}] = 10^{-6.1113} \text{ mol}^2 \text{ kg}^{-2} \text{ at } 0^{\circ}\text{C}$
 $= 10^{-6.1391} \text{ mol}^2 \text{ kg}^{-2} \text{ at } 30^{\circ}\text{C}$

CaCO₃(s, calcite)
$$\rightleftharpoons$$
 Ca²⁺ + CO₃²⁻ (E)
 $K_{sp}^{cal} = [Ca^{2+}][CO_3^{2-}] = 10^{-6.3652} \text{ mol}^2 \text{ kg}^{-2} \text{ at } 0^{\circ}\text{C}$
 $= 10^{-6.3713} \text{ mol}^2 \text{ kg}^{-2} \text{ at } 30^{\circ}\text{C}$

The first equilibrium constant is called $K_{\rm H}$ for Henry's law (Problem 9-11). Units are given to remind you what units you must use.

- (a) Combine the expressions for $K_{\rm H}$, $K_{\rm a1}$, and $K_{\rm a2}$ to find an expression for $[{\rm CO_3^{2-}}]$ in terms of $P_{\rm CO}$, and $[{\rm H}^+]$.
- (b) From the result of (a), calculate $[CO_3^{2-}]$ (mol kg⁻¹) at P_{CO_2} = 800 µbar and pH = 7.8 at temperatures of 0° (polar ocean) and 30°C (tropical ocean). These are conditions that could be reached around the year 2100 if we continue to release CO_2 at the present rate.
- (c) The concentration of Ca²⁺ in the ocean is 0.010 M. Predict whether aragonite and calcite will dissolve under the conditions in (b).

- **9-24.** The acid HA has $pK_a = 7.00$.
- (a) Which is the principal species, HA or A⁻, at pH 6.00?
- (b) Which is the principal species at pH 8.00?
- (c) What is the quotient [A⁻]/[HA] at pH 7.00? at pH 6.00?
- **9-25.** The diprotic acid H_2A has $pK_1 = 4.00$ and $pK_2 = 8.00$.
- (a) At what pH is $[H_2A] = [HA^-]$?
- (b) At what pH is $[HA^-] = [A^{2-}]$?
- (c) Which is the principal species at pH 2.00: H₂A, HA⁻, or A²⁻?
- (d) Which is the principal species at pH 6.00?
- (e) Which is the principal species at pH 10.00?
- **9-26.** The base B has $pK_b = 5.00$.
- (a) What is the value of pK_a for the acid BH⁺?
- (b) At what pH is $[BH^{+}] = [B]$?
- (c) Which is the principal species at pH 7.00: B or BH⁺?
- (d) What is the quotient [B]/[BH⁺] at pH 12.00?
- 9-28. The acid HA has $pK_a = 4.00$. Use Equations 9-17 and 9-18 to find the fraction in the form HA and the fraction in the form A^- at pH = 5.00. Does your answer agree with what you expect for the quotient $[A^-]/[HA]$ at pH 5.00?