- 7-18. Write the charge balance for a solution containing H⁺, OH⁻, Ca²⁺, HCO₃⁻, CO₃², Ca(HCO₃)⁺, Ca(OH)⁺, K⁺, and ClO₄⁻.
- 7-20. Write the charge balance for an aqueous solution of arsenic acid, H₃AsO₄, in which the acid can dissociate to H₂AsO₄, HAsO₄²⁻, and AsO₄³⁻. Look up the structure of arsenic acid in Appendix G and write the structure of HAsO₄²⁻.
- 7-21. (a) Write the charge and mass balances for a solution made by dissolving MgBr₂ to give Mg²⁺, Br⁻, MgBr⁺, and MgOH⁺.
- (b) Modify the mass balance if the solution was made by dissolving 0.2 mol MgBr₂ in 1 L.
- 7-24. Consider the dissolution of the compound X₂Y₃, which gives X₂Y₂²⁺, X₂Y⁴⁺, X₂Y₃(aq), and Y²⁻. Use the mass balance to find an expression for [Y²⁻] in terms of the other concentrations. Simplify your answer as much as possible.
- 7-27. (a) Following the example of Mg(OH)₂ in Section 7-5, write the equations needed to find the solubility of Ca(OH)₂. Include activity coefficients where appropriate. Equilibrium constants are in Appendixes F and I.
- (b) Neglecting activity coefficients, compute the concentrations of all species and compute the solubility of Ca(OH)₂ in g/L.
- 7-30. Heterogeneous equilibria and calcite solubility. If river water in Box 7-2 is saturated with calcite (CaCO₃), [Ca²⁺] is governed by the following equilibria:

$$CaCO_3(s) \rightleftharpoons Ca^{2+} + CO_3^{2-}$$
 $K_{sp} = 4.5 \times 10^{-9}$
 $CO_2(g) \rightleftharpoons CO_2(aq)$ $K_{CO_2} = 0.032$
 $CO_2(aq) + H_2O \rightleftharpoons HCO_3^- + H^+$ $K_1 = 4.46 \times 10^{-7}$
 $HCO_3^- \rightleftharpoons CO_3^{2-} + H^+$ $K_2 = 4.69 \times 10^{-11}$

(a) From these reactions, find the equilibrium constant for the reaction

$$CaCO_3(s) + CO_2(aq) + H_2O \rightleftharpoons Ca^{2+} + 2HCO_3^- K = ?$$
 (A)

- (b) The mass balance for Reaction A is $[HCO_3^-] = 2[Ca^{2+}]$. Find $[Ca^{2+}]$ (in mol/L and in mg/L) in equilibrium with atmospheric CO_2 if $P_{CO_2} = 3.8 \times 10^{-4}$ bar. Locate this point on the line in Box 7-2.
- (c) The concentration of Ca^{2+} in the Don River is 80 mg/L. What effective P_{CO_2} is in equilibrium with this much Ca^{2+} ? How can the river have this much CO_2 ?