6-51. From the following equilibrium constants, calculate the equilibrium constant for the reaction $HO_2CCO_2H \rightleftharpoons 2H^+ + C_2O_4^{2-}$.

6-53. The planet Aragonose (which is made mostly of the mineral aragonite, whose composition is CaCO₃) has an atmosphere containing methane and carbon dioxide, each at a pressure of 0.10 bar. The oceans are saturated with aragonite and have a concentration of H⁺ equal to 1.8 × 10⁻⁷ M. Given the following equilibria, calculate how many grams of calcium are contained in 2.00 L of Aragonose seawater.

$$CaCO_3(s, aragonite) \rightleftharpoons Ca^{2+}(aq) + CO_3^{2-}(aq)$$
 $K_{sp} = 6.0 \times 10^{-9}$
 $CO_2(g) \rightleftharpoons CO_2(aq)$ $K_{CO_2} = 3.4 \times 10^{-2}$
 $CO_2(aq) + H_2O(l) \rightleftharpoons HCO_3^{-}(aq) + H^+(aq)$ $K_1 = 4.5 \times 10^{-7}$
 $HCO_3^{-}(aq) \rightleftharpoons H^+(aq) + CO_3^{2-}(aq)$ $K_2 = 4.7 \times 10^{-11}$

Don't panic! Reverse the first reaction, add all the reactions together, and see what cancels.

- 8-B. (Without activities), calculate the pH of
- (a) $1.0 \times 10^{-8} \text{ M HBr}$
- (b) 1.0×10^{-8} M H₂SO₄ (H₂SO₄ dissociates completely to 2H⁺ plus SO₄²⁻ at this low concentration.)
- 8-E. Calculate the limiting value of the fraction of dissociation (α) of a weak acid ($pK_a = 5.00$) as the concentration of HA approaches 0. Repeat the same calculation for $pK_a = 9.00$.
- 8-3. Calculate the pH of 5.0 × 10⁻⁸ M HClO₄. What fraction of the total H⁺ in this solution is derived from dissociation of water?
- 8-8. Find the pH and concentrations of (CH₃)₃N and (CH₃)₃NH⁺ in a 0.060 M solution of trimethylammonium chloride.
- 8-10. When is a weak acid weak and when is a weak acid strong? Show that the weak acid HA will be 92% dissociated when dissolved in water if the formal concentration is one-tenth of K_a (F = $K_0/10$). Show that the fraction of dissociation is 27% when F = $10K_a$. At what formal concentration will the acid be 99% dissociated? Compare your answer with the left-hand curve in Figure 8-2.

- 8-14. Using activity coefficients, find the pH and fraction of dissociation of 50.0 mM hydroxybenzene (phenol) in 0.050 M LiBr. Take the size of C₆H₅O⁻ to be 600 pm.
- 8-15. Cr3+ is acidic by virtue of the hydrolysis reaction

$$Cr^{3+} + H_2O \stackrel{K_{al}}{\rightleftharpoons} Cr(OH)^{2+} + H^+$$

[Further reactions produce $Cr(OH)_{2}^{+}$, $Cr(OH)_{3}$, and $Cr(OH)_{4}^{-}$.] Find the value of K_{a1} in Figure 6-8. Considering only the K_{a1} reaction, find the pH of 0.010 M $Cr(ClO_{4})_{3}$. What fraction of chromium is in the form $Cr(OH)^{2+}$?

- 8-19. Find the pH and fraction of association (α) of a 0.100 M solution of the weak base B with $K_b = 1.00 \times 10^{-5}$.
- **8-22.** Calculate the fraction of association (α) for 1.00×10^{-1} , 1.00×10^{-2} , and 1.00×10^{-12} M sodium acetate. Does α increase or decrease with dilution?