

Organic Chemistry II / CHEM 252

Chapter 20 – Amines

Bela Torok Department of Chemistry University of Massachusetts Boston Boston, MA

• Nomenclature

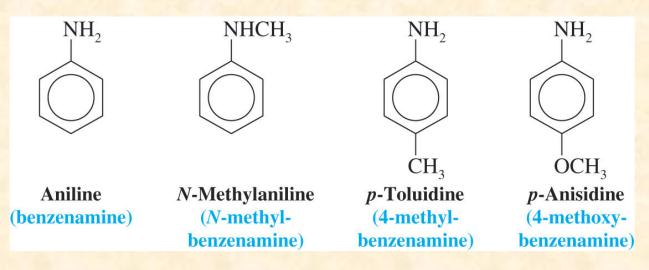
- *Primary amines* are named in systematic (IUPAC) nomenclature by replacing the *-e* of the corresponding parent alkane with *-amine*
- In common nomenclature they are named as alkylamines

CH ₃ NH ₂	CH ₃ CH ₂ NH ₂	CH ₃ CHCH ₂ NH ₂ CH ₃	
Methylamine	Ethylamine	Isobutylamine	Cyclohexylamine
(methanamine)	(ethanamine)	(2-methyl-1-propanamine)	(cyclohexanamine)

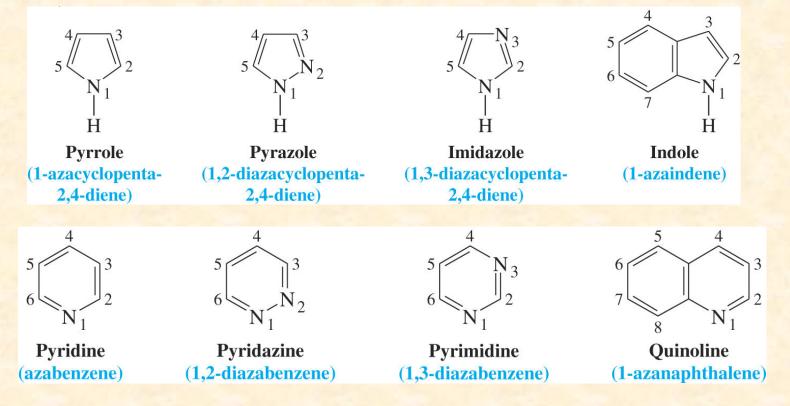
- *Simple secondary and tertiary amines* are named in common nomenclature by designating the organic groups separately in front of the word *amine*
- In systematic nomenclature, the smaller groups on the amine nitrogen are designated as substituents and given the locant N

CH₃NHCH₂CH₃ Ethylmethylamine (*N*-methylethanamine)

(CH₃CH₂)₂NH Diethylamine (*N*-ethylethanamine)

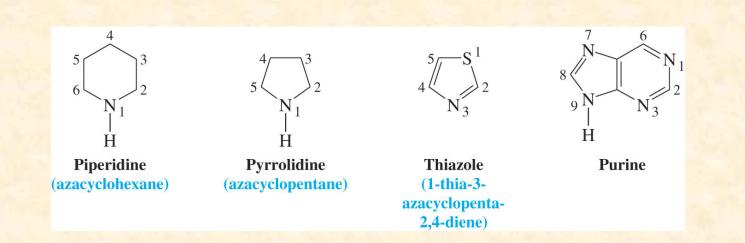

CH2CH3(CH3CH2)3NTriethylamine(N,N-diethylethanamine)(N-ethyl-N-methyl-1-propanamine)

• In IUPAC nomenclature the substitutent -NH₂ is called the *amino* group


 $\begin{array}{ccc} O \\ \parallel \\ H_2NCH_2CH_2OH \\ \textbf{2-Aminoethanol} \\ \end{array} \begin{array}{c} O \\ H_2NCH_2CH_2CH_2CH \\ \textbf{3-Aminopropanoic acid} \\ \end{array}$

– Aryl Amines

• The common arylamines have the following names:



- Heterocyclic Amines
 - The important heterocylcic amines have common names
 - In IUPAC nomenclature the prefixes *aza-*, *diaza-* and *triaza-* are used to indicate that nitrogen has replaced carbon in the corresponding hydrocarbon
 - The nitrogen is assigned position 1 and the ring is numbered to give the lowest overall set of locants to the

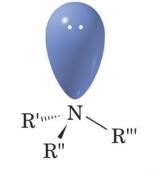
Physical Properties

UMASS. BOSTON

Physical Properties and Structure of Amines

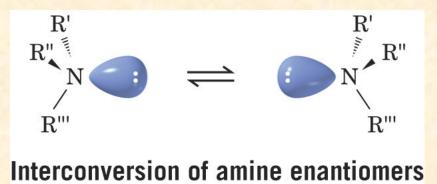
- Primary and secondary amines can form hydrogen bonds to each other and water
- Tertiary amines cannot form hydrogen bonds to each other but can form hydrogen bonds to hydrogen bond donors such as water
- Tertiary amines have lower boiling points than primary or secondary amines of comparable molecular weights
- Low molecular weight amines tend to be water soluble whether they are primary, secondary or tertiary

Physical Properties


Name	Structure	mp (°C)	bp (°C)	Water Solubility (25°C) (g 100 mL ⁻¹)	p <i>K</i> a (aminium ion)
Primary Amines					
Methylamine	CH ₃ NH ₂	-94	-6	Very soluble	10.64
Ethylamine	CH ₃ CH ₂ NH ₂	-81	17	Very soluble	10.75
Propylamine	CH ₃ CH ₂ CH ₂ NH ₂	-83	49	Very soluble	10.67
Isopropylamine	(CH ₃) ₂ CHNH ₂	-101	33	Very soluble	10.73
Butylamine	CH ₃ (CH ₂) ₂ CH ₂ NH ₂	-51	78	Very soluble	10.61
Isobutylamine	(CH ₃) ₂ CHCH ₂ NH ₂	-86	68	Very soluble	10.49
sec-Butylamine	CH ₃ CH ₂ CH(CH ₃)NH ₂	-104	63	Very soluble	10.56
tert-Butylamine	(CH ₃) ₃ CNH ₂	-68	45	Very soluble	10.45
Cyclohexylamine	Cyclo-C ₆ H ₁₁ NH ₂	-18	134	Slightly soluble	10.64
Benzylamine	C ₆ H ₅ CH ₂ NH ₂	10	185	Slightly soluble	9.30
Aniline	C ₆ H ₅ NH ₂	-6	184	3.7	4.58
<i>p</i> -Toluidine	p-CH ₃ C ₆ H ₄ NH ₂	44	200	Slightly soluble	5.08
p-Anisidine	p-CH ₃ OC ₆ H ₄ NH ₂	57	244	Very slightly soluble	5.30
p-Chloroaniline	p-CIC ₆ H ₄ NH ₂	73	232	Insoluble	4.00
p-Nitroaniline	p-NO ₂ C ₆ H ₄ NH ₂	148	332	Insoluble	1.00
Secondary Amines					
Dimethylamine	(CH ₃) ₂ NH	-92	7	Very soluble	10.72
Diethylamine	(CH ₃ CH ₂) ₂ NH	-48	56	Very soluble	10.98
Dipropylamine	(CH ₃ CH ₂ CH ₂) ₂ NH	-40	110	Very soluble	10.98
N-Methylaniline	C ₆ H ₅ NHCH ₃	-57	196	Slightly soluble	4.70
Diphenylamine	(C ₆ H ₅) ₂ NH	53	302	Insoluble	0.80
Tertiary Amines					
Trimethylamine	(CH ₃) ₃ N	-117	2.9	Very soluble	9.70
Triethylamine	(CH ₃ CH ₂) ₃ N	-115	90	14	10.76
Tripropylamine	(CH ₃ CH ₂ CH ₂) ₃ N	-93	156	Slightly soluble	10.64
N,N-Dimethylaniline	$C_6H_5N(CH_3)_2$	3	194	Slightly soluble	5.06

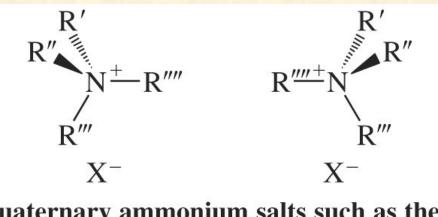
Structure

• Structure of Amines



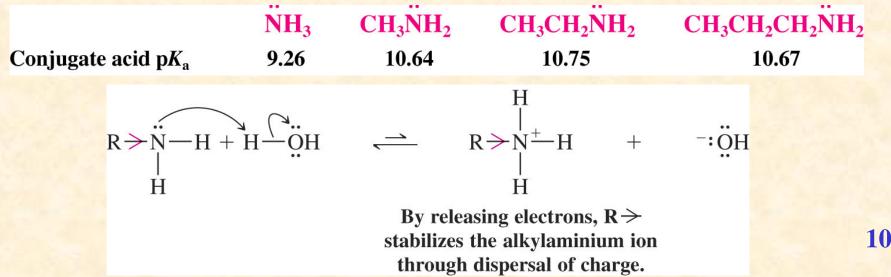
- The nitrogen atom in an amine is sp^3 hybridized *tetrahedral* geometry
 - only the groups trigonal pyramidal

Structure of an amine


- It is usually impossible to resolve amine enantiomers that are chiral at nitrogen because they interconvert rapidly
 - The interconversion occurs through a *pyramidal* or *nitrogen inversion* involving the unshared electron pair

Structure

- Quaternary ammonium salts can be resolved into enantiomers
 - Chiral quaternary ammonium salts cannot undergo nitrogen inversion because they lack an unshared electron pair on the nitrogen atom



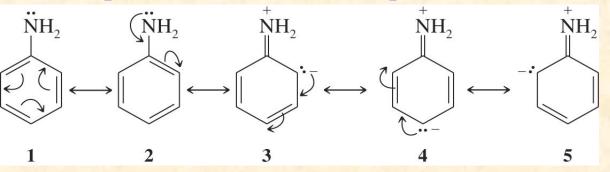
Quaternary ammonium salts such as these can be resolved.

- Amines are weak bases
- Relative basicity of amines can be compared in terms of pK_a values for their respective conjugate acids
 - The more basic the amine, the higher the pK_a of its conjugate acid will be

$$R\dot{N}H_3 + H_2O \longrightarrow RNH_2 + H_3O^+$$
$$K_a = \frac{[RHN_2][H_3O^+]}{[RNH_3^+]} \qquad pK_a = -\log K_a$$

- Primary alkyl amines are more basic than ammonia
 - An alkyl group helps to stabilize the alkylaminium ion

• gas phase : basicity increases with increasing methyl substitution

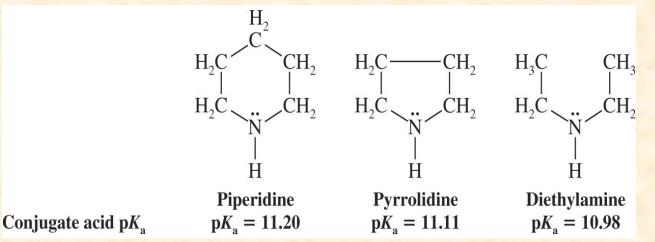


$(CH_3)_3N > (CH_3)_2NH > CH_3NH_2 > NH_3$

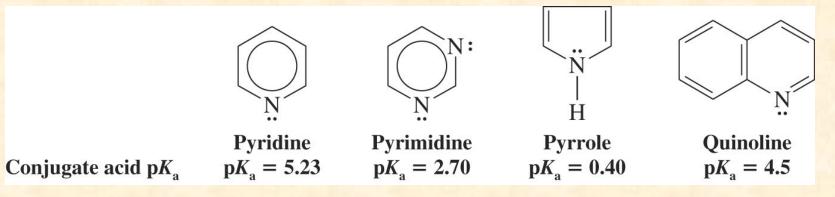
- aqueous solution: trimethylamine is less basic than dimethyl- or methylamine
 - An alkylaminium ion in water is solvated and stabilized by hydrogen bonding of its hydrogens with water
 - The trimethylaminium ion has only one hydrogen with which to hydrogen bond to water
 - The trimethylaminium ion is solvated less well (and therefore stabilized less) than the dimethylaminium ion, which has two hydrogen atoms for hydrogen bonding


$(CH_3)_2NH > CH_3NH_2 > (CH_3)_3N > NH_3$

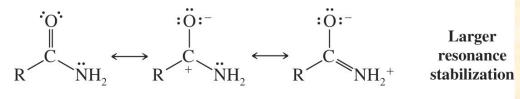
- <u>Arylamines</u> are weaker bases than nonaromatic cyclohexylamines $\frac{\text{Cyclo-C_6H_{11}NH_2}}{\text{Conjugate acid } pK_a} = \frac{10.64}{4.58} = \frac{5.08}{5.08}$
- The unshared electron pair is *delocalized* to the ring
 - The lone pair is less available for protonation, *i.e.*, it is less basic

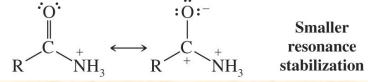


• Protonation of aniline is also disfavored because a protonated arylamine has only two resonance forms


- Anilinium ion is not as well stabilized by resonance as aniline itself

- Basicity of Heterocyclic Amines
 - Nonaromatic heterocyclic amines have approximately the same basicity as their acyclic counterparts


• Aromatic heterocyclic amines (in aqueous solution) are much weaker bases than nonaromatic amines

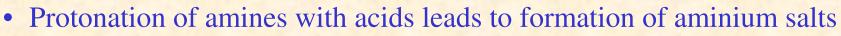


- Amines versus Amides
 - Amides are much less basic than amines
 - The pK_a of a protonated amide is typically about zero
 - One reason for this much lower basicity is that the amide is greatly stabilized by resonance but the protonated amide is not

Amide

N-Protonated Amide

• A more important reason for the weaker basicity of amides is that the nitrogen lone pair is delocalized, amides are protonated at the oxygen


- Protonation at the oxygen allows resonance stabilization of the positive charge $: \stackrel{+}{OH} : \stackrel{$

14

Salts

- Aminium Salts and Quaternary Ammonium Salts

 Aminium salts are formed from 1°, 2° or 3° amines and the aminium ion bears at least one hydrogen

$$CH_3CH_2\ddot{N}H_2 + HCI \xrightarrow{H_2O} CH_3CH_2\dot{N}H_3 CI^-$$

Ethylaminium chloride (an aminium salt)

 $(CH_3CH_2)_2\ddot{N}H + HBr \xrightarrow{H_2O} (CH_3CH_2)_2\dot{N}H_2 Br^-$

Diethylaminium bromide

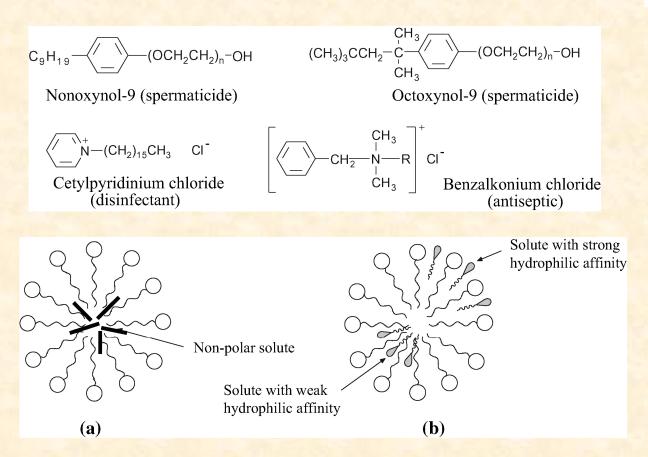
$$(CH_3CH_2)_3\ddot{N} + HI \xrightarrow{H_2O} (CH_3CH_2)_3\ddot{N}H I^-$$

Triethylaminium iodide

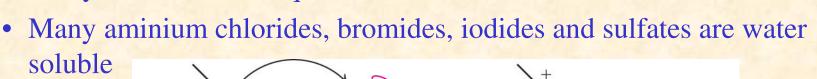
- Quaternary ammonium salts have four groups on the nitrogen
 - The nitrogen atom is positively charged but does not bear a hydrogen atom
 CH₂CH₃

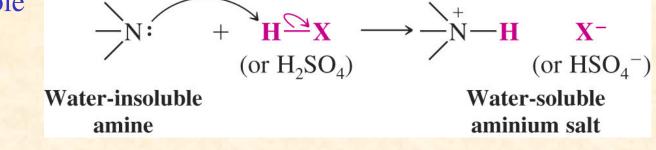
$$CH_{3}CH_{2} - N^{+} CH_{2}CH_{3} Br^{-}$$

Tetraethylammonium bromide (a quaternary ammonium salt)

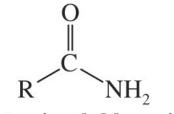

Salts

- Quaternary ammonium halides are not basic because they do not have a unshared electron pair on nitrogen
- Quaternary ammonium hydroxides are very basic because they contain the very strong base hydroxide


$$(CH_3)_4 \overset{+}{N}OH^- + HCl \longrightarrow (CH_3)_4 \overset{+}{N}Cl^- + H_2O$$

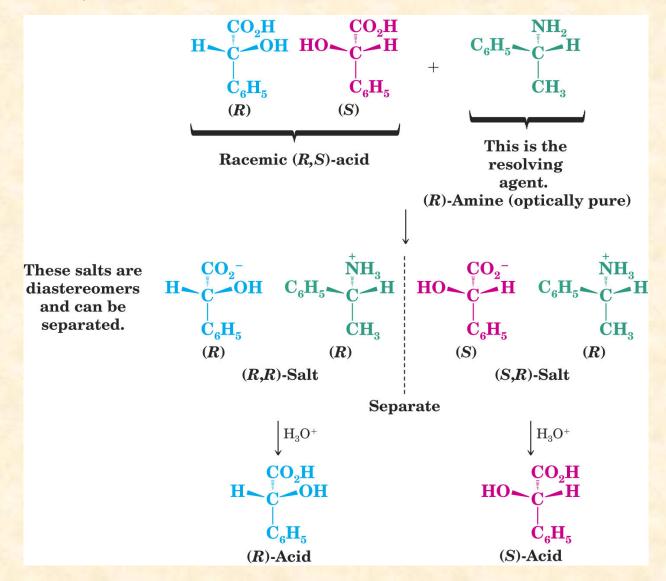

 $(CH_3CH_2)_4N Br^-$

Tetraethylammonium bromide (does not undergo reaction with acid)



- Solubility of Amines in Aqueous Acid

- Solubility of amines in dilute acid can be used as a chemical test
- Amides are not basic and are not soluble in aqueous acids


Water-insoluble amide (not soluble in aqueous acids)

Resolving Agents

- Amines as Resolving Agents

• A chiral amine can be used to resolve a racemic mixture of carboxylic acids by formation of diastereomeric salts

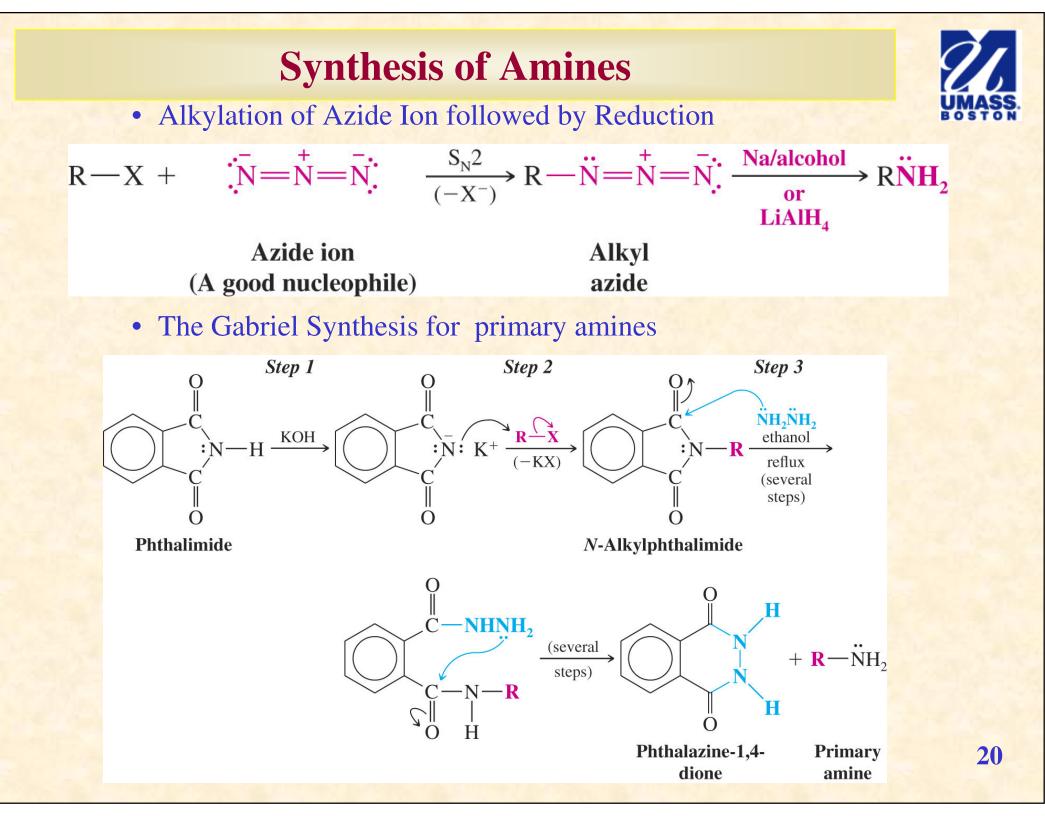
By Nucleophilic Substitution Reactions

- Alkylation of Ammonia
 - Reaction of ammonia with an alkyl halide

 $\overset{\sim}{\mathbf{NH}_{3}} + \overset{\sim}{\mathbf{R}} \overset{\sim}{\longrightarrow} \mathbf{R} \overset{+}{\longrightarrow} \mathbf{R} \overset{+}{\longrightarrow} \mathbf{RNH}_{3} \mathbf{X}^{-} \overset{\mathrm{OH}^{-}}{\longrightarrow} \mathbf{RNH}_{2}$

$$\ddot{\mathbf{N}}\mathbf{H}_{3} + \mathbf{CH}_{3}\mathbf{CH}_{2} \xrightarrow{\mathbf{C}^{*}}\mathbf{Br} \longrightarrow \mathbf{CH}_{3}\mathbf{CH}_{2} \xrightarrow{\mathbf{N}}\mathbf{H}_{3} + \mathbf{Br}^{-}$$

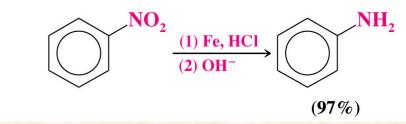
$$\mathbf{H} \underbrace{\mathbf{H}}_{\mathbf{CH}_{3}\mathbf{CH}_{2}} \xrightarrow{\mathbf{N}}\mathbf{H}_{\mathbf{H}} + \mathbf{NH}_{3} \longrightarrow \mathbf{CH}_{3}\mathbf{CH}_{2}\mathbf{NH}_{2} + \mathbf{NH}_{4}$$

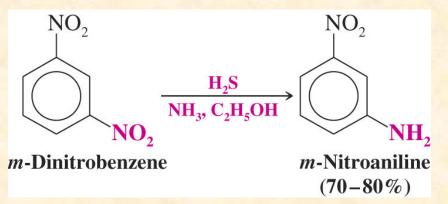

$$\dot{H}$$

$$CH_{3}CH_{2}\dot{N}H_{2} + CH_{3}CH_{2}\overset{\frown}{\longrightarrow} Br \longrightarrow (CH_{3}CH_{2})_{2}\overset{+}{N}H_{2} + Br^{-}, etc.$$

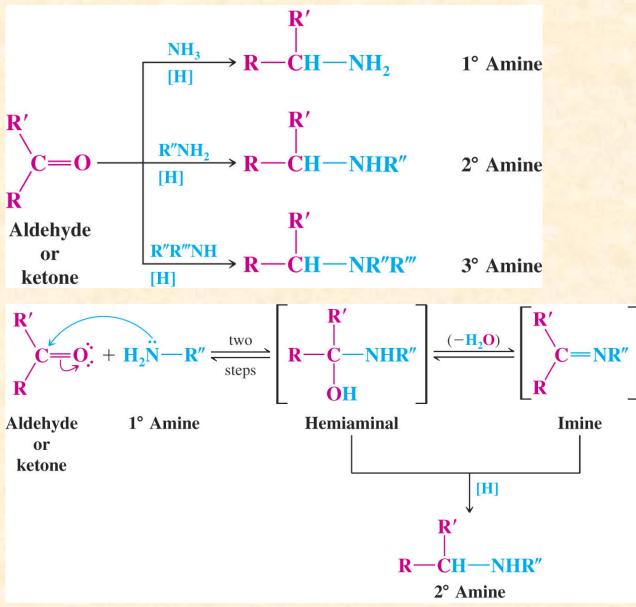
Using an excess of ammonia helps to minimize multiple alkylations

$$\begin{array}{cccc} CH_{3}CHCO_{2}H + & \mathbf{NH}_{3} & \longrightarrow CH_{3}CHCO_{2}^{-}\mathbf{NH}_{4}^{+} \\ & & & & \\ Br & & & \mathbf{NH}_{2} \\ (1 \text{ mol}) & (70 \text{ mol}) & & Alanine \\ & & & (65-70\%) \end{array}$$

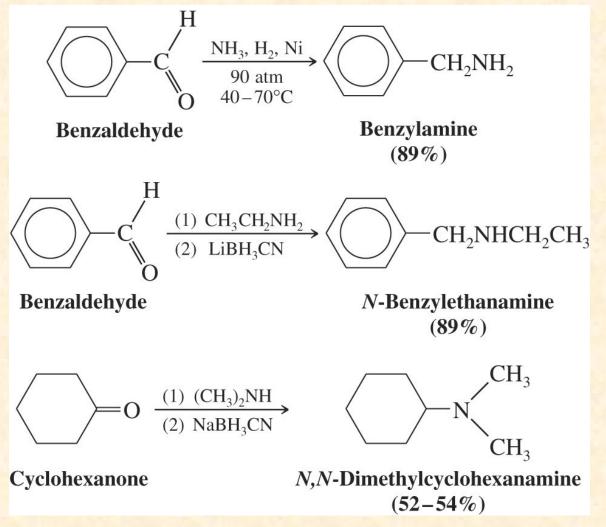

- Preparation of Aromatic Amines by Reduction of Nitro Compounds
 - Aromatic amines can be synthesized by reduction of the corresponding nitro compound
 HNO2

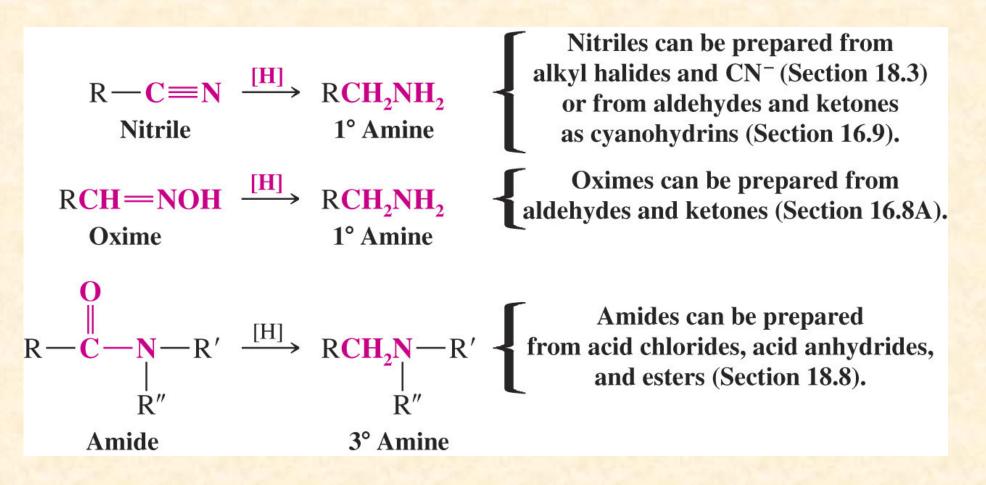

General Reaction

Ar
$$-$$
 NO₂ $\xrightarrow{H_2, \text{ catalyst}}$ Ar $-$ NH₂


Specific Example

• One molar equivalent of hydrogen sulfide in alcoholic ammonia can be used to reduce one nitro group in the presence of another


 Preparation of Primary, Secondary and Tertiary Amines through <u>Reductive Amination</u>



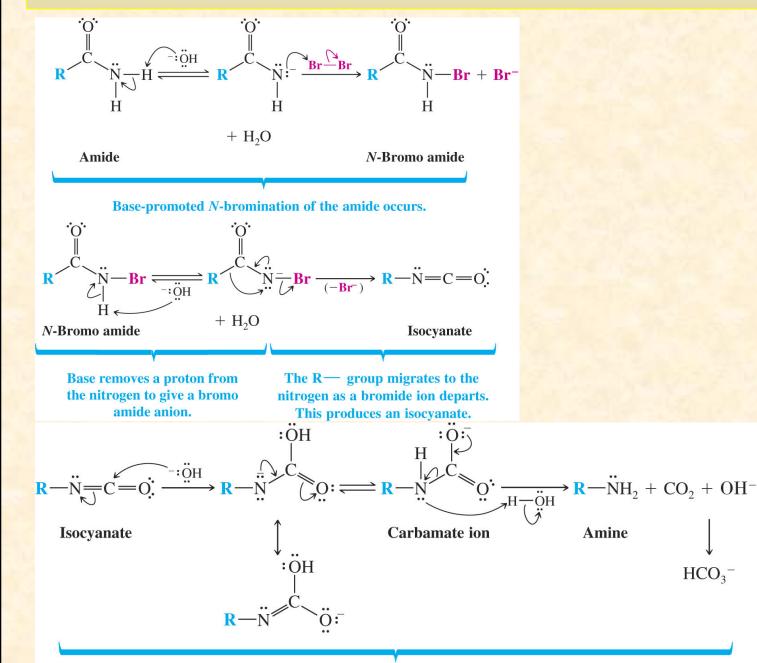
- The reduction can be accomplished using catalytic hydrogenation or a hydride reducing reagent
 - NaBH₃CN and LiBH₃CN are especially effective in reductive aminations

 Preparation of Primary, Secondary, or Tertiary Amines through Reduction of Nitriles, Oximes, and Amides

Reduction can be accomplished by using catalytic hydrogenation o
 LiAlH₄

• Monoalkylation of an amine can be achieved by acylation of the amine and then reduction of the resulting amide

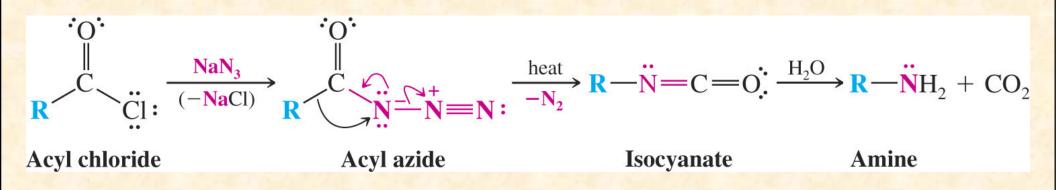
$$C_{6}H_{5}CH_{2}NH_{2} \xrightarrow[base]{CH_{3}COCI} base \rightarrow C_{6}H_{5}CH_{2}NHCCH_{3} \xrightarrow[(2)]{(1)}{LiAlH_{4}, Et_{2}O} \rightarrow C_{6}H_{5}CH_{2}NHCH_{2}CH_{3}$$
Benzylamine Benzylethylamine 25


 Preparation of Primary Amines by the Hofmann and Curtius Rearrangements

Ö

• An unsubstituted amide can be converted to a primary amine by formal loss of the amide carbonyl through the *Hofmann rearrangement (also called the Hofmann degradation)*

$$\mathbf{R} \longrightarrow \mathbf{C} \longrightarrow \mathbf{R} + \mathbf{Br}_{2} + 4 \operatorname{NaOH} \xrightarrow{\mathbf{H}_{2}\mathbf{O}} \mathbf{R} + 2 \operatorname{NaBr} + \operatorname{Na}_{2} \operatorname{CO}_{3} + 2 \operatorname{H}_{2}\mathbf{O}$$


- The first two steps of the mechanism result in *N*-bromination of the amide
 - The N-bromoamide is deprotonated and rearranges to an isocyanate
 - The isocyanate is hydrolyzed to a carbamate which decarboxylates to the amine

The isocyanate undergoes hydrolysis and decarboxylation to produce the amine.

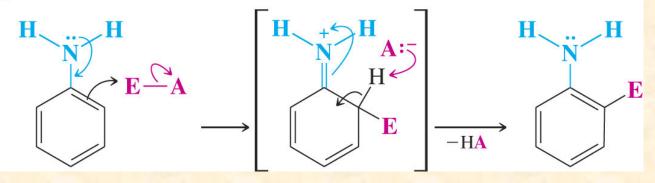
- The *Curtius rearrangement* occurs through the intermediacy of an acyl azide
 - The acyl azide is obtained from an acid chloride
 - Rearrangement of the acyl azide occurs with loss of N_2 , a very stable leaving group
 - In the last step, the isocyanate is hydrolyzed by adding water

The lone pair of the nitrogen atom accounts for most chemistry of amines

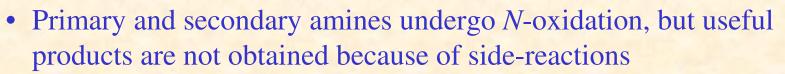
 The unshared electron pair can act as a base or as a nucleophile Acid-Base Reactions

$$-\mathbf{N}$$
 $+$ \mathbf{H} \mathbf{A} $=$ \mathbf{N} \mathbf{H} $+$ $+$ \mathbf{A} $-$

An amine acting as a base


Alkylation

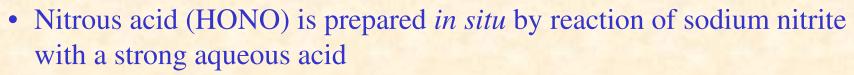
$$-\mathbf{N}: + \mathbf{R} - \mathbf{CH}_2 - \mathbf{Br} \longrightarrow -\mathbf{N} - \mathbf{CH}_2\mathbf{R} + \mathbf{Br}^-$$


An amine acting as a nucleophile in an alkylation reaction

• The nitrogen lone pair can also make a carbon nucleophilic by resonance

Electrophilic Aromatic Substitution

Oxidation of Amines


• Tertiary amines undergo clean N-oxidation

$$R_{3}N: \xrightarrow{H_{2}O_{2} \text{ or } RCOOH} R_{3}N \xrightarrow{+} R_{3}N \xrightarrow{+} COH$$

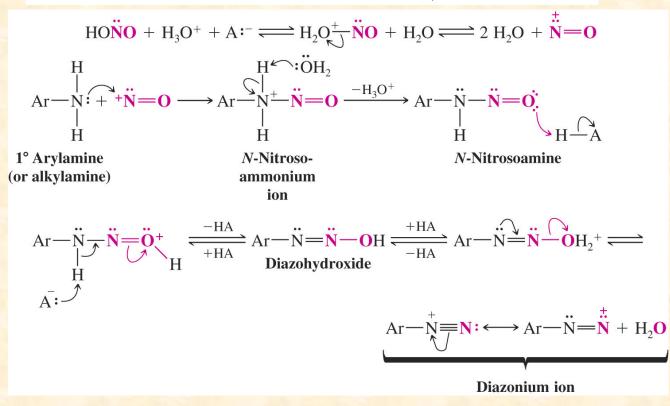
A tertiary amine oxide

Reactions of Amines with Nitrous Acid

$$HCl_{(aq)} + NaNO_{2(aq)} \longrightarrow HONO_{(aq)} + NaCl_{(aq)}$$
$$H_2SO_4 + 2 NaNO_{2(aq)} \longrightarrow 2 HONO_{(aq)} + Na_2SO_{4(aq)}$$

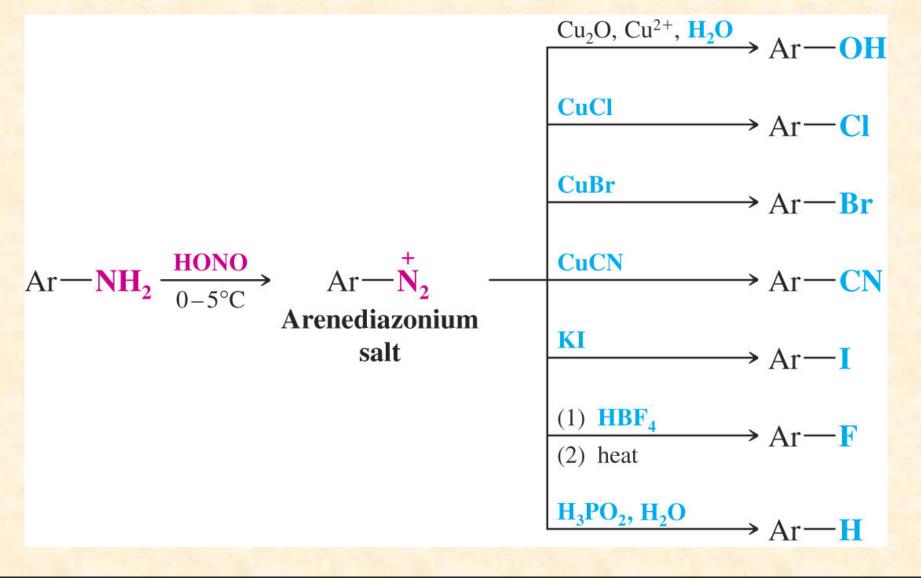
- Primary amines undergo diazotization with nitrous acid
 - The unstable *diazonium salts* decompose to form carbocations

General Reaction

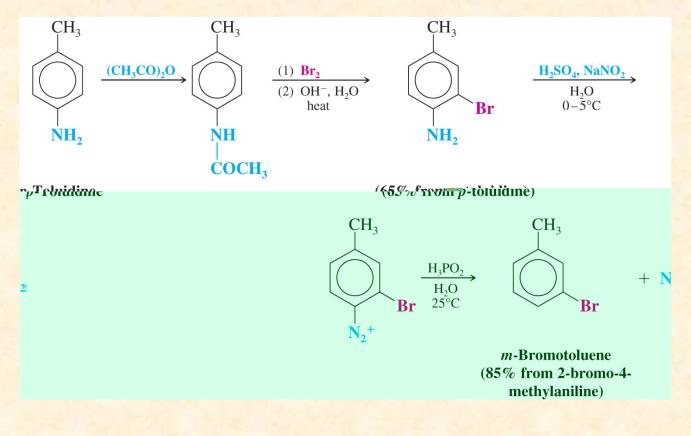

Reaction of primary arylamines with nitrous acid results in the formation of relatively stable arenediazonium salts

- This reaction occurs through the intermediacy of an N-nitrosoamine
- The N-nitrosoamine is converted to a diazonium ion

$$Ar - NH_2 + NaNO_2 + 2 HX \longrightarrow Ar - N \equiv N: X + NaX + 2 H_2O$$

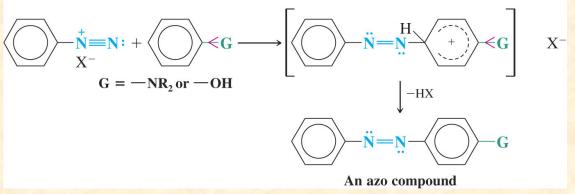

Primary arylamine

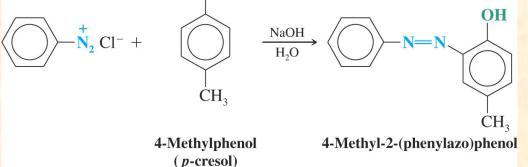
Arenediazonium salt (stable if kept below 5°C)



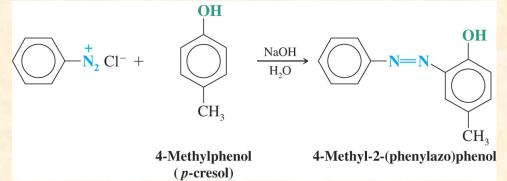
- Replacement Reactions of Arenediazonium Salts <u>Sandmeyer Reactions</u>
 - Aryldiazonium salts react readily with various nucleophilic reagents to give a wide variety of aromatic compounds

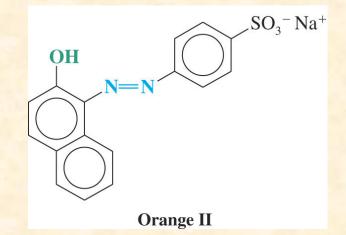
- Practical Application of replacement with H
 - Example: *m*-Bromotoluene cannot be made directly from either toluene or bromobenzene
 - N-acetylation is used to reduce the activating effect of the amine

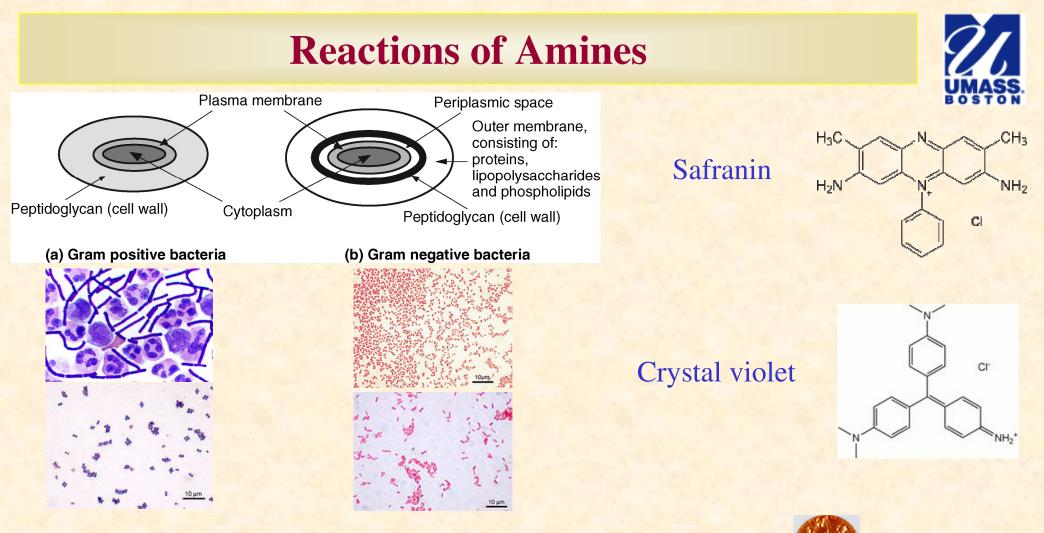




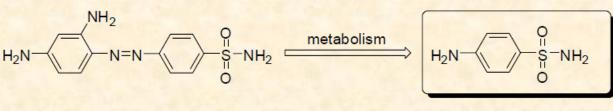
- Coupling Reactions of Arenediazonium Salts
 - Arenediazonium ions react as electrophiles with highly reactive aromatic compounds such as phenol and aromatic tertiary amines
 - The reaction is called a *diazo coupling reaction*




- Coupling with phenol occurs best in slightly alkaline solution
 - The alkaline solution produces a phenoxide ion that couples more rapidly, if the solution is too alkaline, a nonreactive diazohydroxide is produced

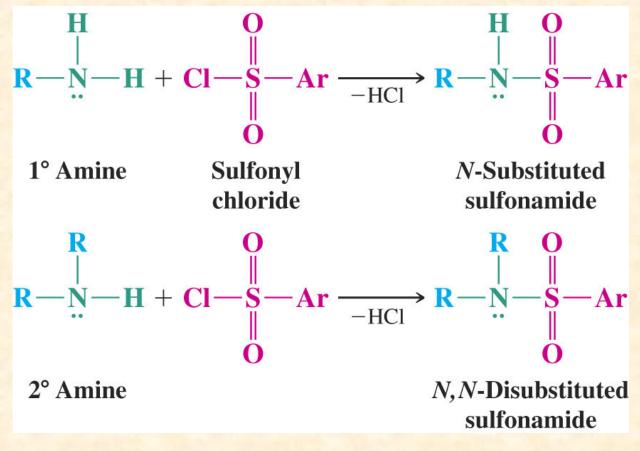


 Phenol and aniline derivatives undergo coupling almost exclusively as the para position unless this position is blocked



- Azo compounds are commonly used as dyes
 - The azo coupling results in compounds which are highly conjugated
 - The $-SO_3$ -Na⁺ group is added to the molecule for solubility and to link the dye to the polar fibers of wool, cotton *etc*.
 - Orange II is made from 2-naphthol

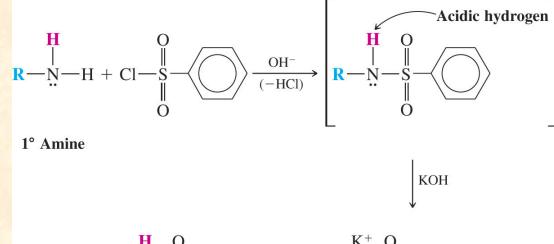
 Half serendipity-half systematic Dyes to Sulfa Drugs (IG Farben, Dogmak 1930s)



Prontosil Red

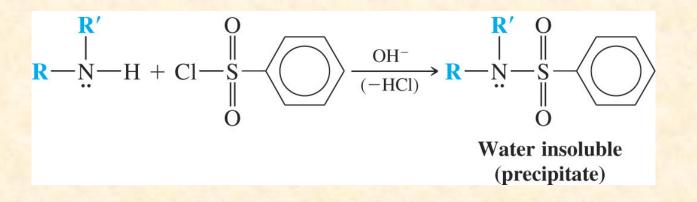
Sulfanilamide

1935


- Reactions of Amines with Sulfonyl Chlorides
 - Primary and secondary amines react with sulfonyl chlorides to produce *sulfonamides*
 - A sulfonamide can be hydrolyzed to an amine by heating with aqueous acid

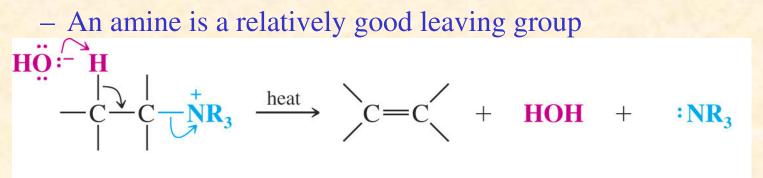


- The Hinsberg Test
 - This test can distinguish between 1°, 2° and 3° amines
 - An amine and benzenesulfonyl chloride are mixed with aqueous potassium hydroxide; the reaction is acidified in a second step
 - The results are different depending on the class of amine
 - A benzenesulfonamide from a primary amine is soluble in basic solution, but precipitates upon acidification



Water insoluble (precipitate)

Water-soluble salt (clear solution)



- A secondary amine forms a precipitate directly because an *N*,*N*-disubstituted sulfonamide remains insoluble in basic solution
- There is no acidic hydrogen in an N,N-disubstituted sulfonamide

- A tertiary amine will not react to form a sulfonamide, but will dissolve upon acidification
 - Acidification converts the amine to a water soluble iminium salt

- Eliminations Involving Ammonium Compounds
 - The Hofmann Elimination
 - An E2-type reaction occurs when a quaternary ammonium hydroxide is heated

A quaternary ammonium hydroxide

an alkene

a tertiary amine

• A quaternary ammonium hydroxide can be made from a quaternary ammonium halide using silver oxide

 $2 \operatorname{RCH}_2\operatorname{CH}_2\overset{+}{\operatorname{N}}(\operatorname{CH}_3)_3 \operatorname{X}^- + \operatorname{Ag}_2\operatorname{O} + \operatorname{H}_2\operatorname{O} \longrightarrow 2 \operatorname{RCH}_2\operatorname{CH}_2\overset{+}{\operatorname{N}}(\operatorname{CH}_3)_3 \operatorname{OH}^- + 2 \operatorname{Ag} \operatorname{X} \downarrow$

A quaternary ammonium halide A quaternary ammonium hydroxide

- Hofmann elimination and other elimination reactions of charged substrates proceed to give the least substituted double bond
 - This is called the Hofmann rule, and the least substituted alkene product is called the Hofmann product

$$C_2H_5O^-Na^+ + CH_3CH_2CHCH_3 \xrightarrow{C_2H_5OH}_{25^\circ C} Br$$

 $S(CH_3)_2$

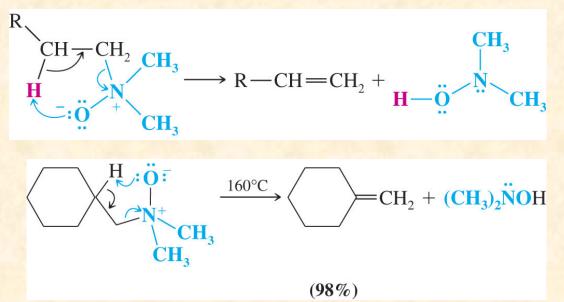
 $CH_{3}CH = CHCH_{3} + CH_{3}CH_{2}CH = CH_{2} + NaBr + C_{2}H_{5}OH$ (75%) (25%)

$$CH_{3}CH_{2}CHCH_{3}OH^{-} \xrightarrow{150^{\circ}C} CH_{3}CH = CHCH_{3} + CH_{3}CH_{2}CH = CH_{2} + (CH_{3})_{3}N^{\circ} + H_{2}O$$

$$\downarrow \qquad (5\%) \qquad (95\%)$$

$$CH_{3}CH_{2}CHCH_{3}\bar{O}C_{2}H_{5} \longrightarrow CH_{3}CH = CHCH_{3} + CH_{3}CH_{2}CH = CH_{2} + (CH_{3})_{2}S + C_{2}H_{5}OH$$

$$\downarrow \qquad (26\%) \qquad (74\%)$$



- The Cope Elimination
 - A tertiary amine oxide will undergo elimination when heated
 - Tertiary amine oxides can be made from tertiary amines by reaction with hydrogen peroxide
 - the elimination is syn and proceeds via a cyclic transition state

$$RCH_{2}CH_{2}N^{+}CH_{3} \xrightarrow{150^{\circ}C} RCH = CH_{2} + \begin{array}{c} :OH \\ | \\ | \\ | \\ CH_{3} \end{array}$$

A tertiary amine oxide An alkene N,N-Di

N,N-Dimethylhydroxylamine

