

Organic Chemistry II / CHEM 252

Chapter 18 – Carboxylic Acids and Their Derivatives.

Bela Torok

Department of Chemistry
University of Massachusetts Boston
Boston, MA

Introduction

• The carboxyl group (-CO₂H) is the parent group of a family of compounds called *acyl compounds* or *carboxylic acid derivatives*

Structure	Name	Structure	Name
O C CI	Acyl (or acid) chloride	O NH ₂	
O O C R'	Acid anhydride	R NHR'	Amide
R C R'	Ester	R NR'R"	
R—C≡N	Nitrile	J	

Nomenclature and Physical Properties

- In IUPAC nomenclature, the name of a carboxylic acid is obtained by changing the -e of the corresponding parent alkane to -oic acid
 - The carboxyl carbon is assigned position 1 and need not be explicitly numbered

- The common names for many carboxylic acids remain in use
 - Methanoic and ethanoic acid are usually referred to as formic and acetic acid
- Carboxylic acids can form strong hydrogen bonds with each other and with water
 - Carboxylic acids with up to 4 carbons are miscible with water in all proportions

Nomenclature and Physical Properties

					Water Solubility (g 100 mL ⁻¹ H ₂ O),	
Structure	Systematic Name	Common Name	mp (°C)	bp (°C)	25°C	pK _a
HCO₂H	Methanoic acid	Formic acid	8	100.5	∞	3.75
CH₃CO₂H	Ethanoic acid	Acetic acid	16.6	118	∞	4.76
CH ₃ CH ₂ CO ₂ H	Propanoic acid	Propionic acid	-21	141	∞	4.87
CH ₃ (CH ₂) ₂ CO ₂ H	Butanoic acid	Butyric acid	-6	164	∞	4.81
CH ₃ (CH ₂) ₃ CO ₂ H	Pentanoic acid	Valeric acid	-34	187	4.97	4.82
CH ₃ (CH ₂) ₄ CO ₂ H	Hexanoic acid	Caproic acid	-3	205	1.08	4.84
CH ₃ (CH ₂) ₆ CO ₂ H	Octanoic acid	Caprylic acid	16	239	0.07	4.89
CH ₃ (CH ₂) ₈ CO ₂ H	Decanoic acid	Capric acid	31	269	0.015	4.84
CH ₃ (CH ₂) ₁₀ CO ₂ H	Dodecanoic acid	Lauric acid	44	179^{18}	0.006	5.30
CH ₃ (CH ₂) ₁₂ CO ₂ H	Tetradecanoic acid	Myristic acid	59	200^{20}	0.002	
CH ₃ (CH ₂) ₁₄ CO ₂ H	Hexadecanoic acid	Palmitic acid	63	219^{17}	0.0007	6.46
CH ₃ (CH ₂) ₁₆ CO ₂ H	Octadecanoic acid	Stearic acid	70	383	0.0003	
CH ₂ CICO ₂ H	Chloroethanoic acid	Chloroacetic acid	63	189	Very soluble	2.86
CHCl ₂ CO ₂ H	Dichloroethanoic acid	Dichloroacetic acid	10.8	192	Very soluble	1.48
CCI ₃ CO ₂ H	Trichloroethanoic acid	Trichloroacetic acid	56.3	198	Very soluble	0.70
CH ₃ CHClCO ₂ H	2-Chloropropanoic acid	lpha-Chloropropionic acid		186	Soluble	2.83
CH ₂ CICH ₂ CO ₂ H	3-Chloropropanoic acid	eta-Chloropropionic acid	61	204	Soluble	3.98
C ₆ H ₅ CO ₂ H	Benzoic acid	Benzoic acid	122	250	0.34	4.19
p-CH ₃ C ₆ H ₄ CO ₂ H	4-Methylbenzoic acid	<i>p</i> -Toluic acid	180	275	0.03	4.36
p-CIC ₆ H ₄ CO ₂ H	4-Chlorobenzoic acid	p-Chlorobenzoic acid	242		0.009	3.98
p-NO ₂ C ₆ H ₄ CO ₂ H	4-Nitrobenzoic acid	p-Nitrobenzoic acid	242		0.03	3.41
ÇO ₂ H	1-Naphthoic acid	α -Naphthoic acid	160	300	Insoluble	3.70
CO ₂ H	2-Naphthoic acid	eta-Naphthoic acid	185	-300	Insoluble	4.17

Acidity

- The carboxyl proton of most carboxylic acids has a $pK_a = 4 5$
 - Carboxylic acids are deprotonated by NaOH or NaHCO₃
 - Carboxylate salts are more water soluble than the acid

- Electron-withdrawing groups increase the acidity
 - They stabilize the carboxylate anion by inductive delocalization of charge

Dicarboxylic Acids

- Dicarboxylic acids are named as alkanedioic acids in the IUPAC system
 - Common names are often used for simple dicarboxylic acids

			р <i>К</i> _а (at 25°С)	
Structure	Common Name	mp (°C)	p K ₁	р К 2
HO ₂ C—CO ₂ H	Oxalic acid	189 dec	1.2	4.2
HO ₂ CCH ₂ CO ₂ H	Malonic acid	136	2.9	5.7
$HO_2C(CH_2)_2CO_2H$	Succinic acid	187	4.2	5.6
$HO_2C(CH_2)_3CO_2H$	Glutaric acid	98	4.3	5.4
$HO_2C(CH_2)_4CO_2H$	Adipic acid	153	4.4	5.6
cis-HO ₂ C—CH=CH—CO ₂ H	Maleic acid	131	1.9	6.1
trans-HO ₂ C—CH=CH—CO ₂ H	Fumaric acid	287	3.0	4.4
CO ₂ H CO ₂ H	Phthalic acid	206-208 dec	2.9	5.4
CO ₂ H	Isophthalic acid	345–348	3.5	4.6
CO₂H				
CO ₂ H	Terephthalic acid	Sublimes	3.5	4.8
CO ₂ H				

Esters

- ZZ UMASS.
- The names of esters are derived from the names of the corresponding carboxylic acid and alcohol from which the ester would be made
 - The alcohol portion is named first and has the ending -yl
 - The carboxylic acid portion follows and its name ends with -ate or oate

- Esters cannot hydrogen bond to each other and therefore have lower boiling points than carboxylic acids
 - Esters can hydrogen bond to water and have appreciable water solubility

Esters

Name	Structure	mp (°C)	bp (°C)	Solubility in Water (g 100 mL ⁻¹ at 20°C)
Methyl formate	HCO ₂ CH ₃	-99	31.5	Very soluble
Ethyl formate	HCO ₂ CH ₂ CH ₃	-79	54	Soluble
Methyl acetate	CH ₃ CO ₂ CH ₃	-99	57	24.4
Ethyl acetate	CH ₃ CO ₂ CH ₂ CH ₃	-82	77	7.39 (25°C)
Propyl acetate	CH ₃ CO ₂ CH ₂ CH ₂ CH ₃	-93	102	1.89
Butyl acetate	CH ₃ CO ₂ CH ₂ (CH ₂) ₂ CH ₃	-74	125	1.0 (22°C)
Ethyl propanoate	CH ₃ CH ₂ CO ₂ CH ₂ CH ₃	-73	99	1.75
Ethyl butanoate	CH ₃ (CH ₂) ₂ CO ₂ CH ₂ CH ₃	-93	120	0.51
Ethyl pentanoate	$CH_3(CH_2)_3CO_2CH_2CH_3$	-91	145	0.22
Ethyl hexanoate	CH ₃ (CH ₂) ₄ CO ₂ CH ₂ CH ₃	-68	168	0.063
Methyl benzoate	$C_6H_5CO_2CH_3$	-12	199	0.15
Ethyl benzoate	$C_6H_5CO_2CH_2CH_3$	-35	213	0.08
Phenyl acetate	$CH_3CO_2C_6H_5$		196	Slightly soluble
Methyl salicylate	o-HOC ₆ H ₄ CO ₂ CH ₃	-9	223	0.74 (30°C)

Acid Anhydrides, Chlorides

- Acid Anhydrides
 - Most anhydrides are named by dropping the word *acid* from the carboxylic acid name and adding the word *anhydride*

Acid Chlorides

• Acid chlorides are named by dropping the -ic acid from the name of the carboxylic acid and adding -yl chloride

- Amides with no substituents on nitrogen are named by replacing -ic acid in the name with amide
 - Groups on the nitrogen are named as substitutents and are given the locants N- or N,N-

- Amides with one or two hydrogens on nitrogen form very strong hydrogen bonds and have high melting and boiling points
 - N,N-disubstituted amides cannot form hydrogen bonds to each other and have lower melting and boiling points

Amides, Nitriles

• Hydrogen bonding between amides in proteins and peptides is an important factor in determining their 3-dimensional shape

Nitriles

- Acyclic nitriles are named by adding the suffix *-nitrile* to the alkane name
 - The nitrile carbon is assigned position 1
 - Ethanenitrile is usually called acetonitrile

$$\overset{2}{\text{CH}_{3}} - \overset{1}{\text{C}} = \overset{1}{\text{N}}:$$
 $\overset{3}{\text{CH}_{2}} = \overset{2}{\text{CH}} - \overset{1}{\text{C}} = \overset{1}{\text{N}}:$
Ethanenitrile
(acetonitrile)

Propenenitrile
(acrylonitrile)

Preparation of Carboxylic Acids

By Oxidation of Alkenes

$$\begin{array}{c}
RCH = CHR' \xrightarrow{(1) \text{KMnO}_4, \text{OH}^-} RCO_2H + R'CO_2H \\
& \text{heat} \\
(2) H_3O^+
\end{array}$$

$$RCH = CHR' \xrightarrow{(1) O_3} RCO_2H + R'CO_2H$$

By Oxidation of Aldehydes and Primary Alcohols

$$R - CHO \xrightarrow{(1) Ag_2O \text{ or } Ag(NH_3)_2^+OH^-} RCO_2H$$

$$RCH_2OH \xrightarrow{(1) KMnO_4, OH^-} RCO_2H$$

$$(2) H_3O^+$$

$$R - CHO \text{ or } RCH_2OH \xrightarrow{H_2CrO_4} RCO_2H$$

By Oxidation of Alkylbenzenes

$$CH_3 \xrightarrow{(1) \text{ KMnO}_4, \text{ OH}^-} CO_2H$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

Preparation of Carboxylic Acids

By Oxidation of the Benzene Ring

$$R - C_6H_5 \xrightarrow{(1) O_3, CH_3CO_2H} R - COH$$

By Oxidation of Methyl Ketones (The Haloform Reaction)

$$Ar \xrightarrow{C} CH_3 \xrightarrow{(1) X_2/NaOH} Ar \xrightarrow{C} OH + CHX_3$$

- By Hydrolysis of Cyanohydrins and Other Nitriles
 - Hydrolysis of a cyanohydrin yields an α-hydroxy acid

Preparation of Carboxylic Acids

Glutaric acid

 Primary alkyl halides can react with cyanide to form nitriles and these can be hydrolyzed to carboxylic acids

$$HOCH_{2}CH_{2}CI \xrightarrow{\text{NaCN}} HOCH_{2}CH_{2}\text{CN} \xrightarrow{(1) \text{OH}^{-}, \text{H}_{2}\text{O}} HOCH_{2}CH_{2}CO_{2}\text{H}$$

$$3\text{-Hydroxy-} (75-80\%) \text{3-Hydroxypropanoic}$$

$$\text{propanenitrile} \text{acid}$$

$$BrCH_{2}CH_{2}CH_{2}Br \xrightarrow{\text{NaCN}} NCCH_{2}CH_{2}CH_{2}CN \xrightarrow{\text{H}_{3}\text{O}^{+}} HO_{2}CCH_{2}CH_{2}CH_{2}CH_{2}CO_{2}\text{H}$$

Pentanenitrile

By Carbonation of Grignard Reagents

$$CH_{3} \xrightarrow{C} \xrightarrow{C} Cl \xrightarrow{Mg} CH_{3} \xrightarrow{CH_{3}} CH_{2} \xrightarrow{CH_{3}} CH_{2} \xrightarrow{CH_{3}} CH_{2} \xrightarrow{CH_{3}} CH_{2} \xrightarrow{CH_{3}} CH_{3} \xrightarrow{CH_$$

Nucleophilic Addition-Elimination

• Recall that aldehydes and ketones undergo nucleophilic addition to the carbon-oxygen double bond

$$\begin{array}{c} R'_{\text{Mu}} \\ C = O \\ \vdots \\ R \end{array} + \text{Nu} := \begin{array}{c} \text{Nu} \\ \text{R} \\ \end{array}$$

$$\begin{array}{c} \text{Nu} \\ \text{Nucleophilic addition} \end{array}$$

- The carbonyl group of carboxylic acids and their derivatives undergo nucleophilic addition-elimination
 - The nucleophile reacts at the carbonyl group
 - The tetrahedral intermediate eliminates a leaving group (L)
 - The carbonyl group is regenerated; the net effect: acyl substitution

Nucleophilic Addition-Elimination

- To undergo nucleophilic addition-elimination the acyl compound must have a good leaving group or a group that can be converted into a good leaving group
 - Acid chlorides react with loss of chloride ion
 - Anhydrides react with loss of a carboxylate ion

Nucleophilic Addition-Elimination

- Esters, carboxylic acids and amides generally react with loss of the leaving groups alcohol, water and amine, respectively
 - These leaving groups are generated by protonation of the acyl compound
- Aldehydes and ketones cannot react by this mechanism because they lack a good leaving group

Relative Reactivity

- Relative Reactivity of Acyl Compounds
 - The relative reactivity of carboxylic acids and their derivatives is as follows:

$$R-C > R-C > R-C$$

- Reactivity can be related to the ability of the leaving group (L) to depart
 - Leaving group ability is inversely related to basicity
 - Chloride is the weakest base and the best leaving group
 - Amines are the strongest bases and the worst leaving groups
- Less reactive acyl compounds can be synthesized from more reactive ones
 - Synthesis of more reactive acyl derivatives from less reactive ones is difficult and requires special reagents (if at all possible)

18

Acyl Chlorides

Synthesis of Acid Chlorides

- Acid chlorides are made from carboxylic acids by reaction with thionyl chloride, phosphorus trichloride or phosphorus pentachloride
 - These reagents work because they turn the hydroxyl group of the carboxylic acid into an excellent leaving group

$$\begin{array}{c} O \\ \parallel \\ RCOH \end{array} + \begin{array}{c} SOCl_2 \\ \hline Thionyl \ chloride \end{array} \longrightarrow R - C - Cl + SO_2 + HCl \\ \hline O \\ \parallel \\ 3 \ RCOH \end{array} + \begin{array}{c} O \\ \parallel \\ PCl_3 \\ \hline Phosphorus \\ trichloride \end{array} \longrightarrow 3 \begin{array}{c} O \\ \parallel \\ RCOH \end{array} + \begin{array}{c} O \\ \parallel \\ PCl_5 \\ \hline Phosphorus \\ pentachloride \end{array} \longrightarrow \begin{array}{c} O \\ \parallel \\ RCCI + POCl_3 + HCl \\ \hline \end{array}$$

Acyl Chlorides

$$\begin{array}{c} \overset{\circ}{\circ} \overset{\circ}{\circ}$$

Reactions of Acyl Chlorides

- Acyl chlorides are the most reactive acyl compounds and can be used to make any of the other derivatives
- Since acyl chlorides are easily made from carboxylic acids they provide a way to synthesize any acyl compound from a carboxylic acid
- Acyl chlorides react readily with water, but this is not a synthetically useful reaction

Acyl Chlorides

Carboxylic Acid Anhydrides

- Synthesis of Carboxylic Acid Anhydrides
 - Acid chlorides react with carboxylic acids to form mixed or symmetrical anhydrides
 - It is necessary to use a base such as pyridine

 Sodium carboxylates react readily with acid chlorides to form anhydrides

Carboxylic Acid Anhydrides

• Cyclic anhydrides with 5- and 6-membered rings can be synthesized by heating the appropriate diacid

- Reactions of Carboxylic Acid Anhydrides
 - Carboxylic acid anhydrides are very reactive and can be used to synthesize esters and amides
 - Hydrolysis of an anhydride yields the corresponding carboxylic acids

Carboxylic Acid Anhydrides

Synthesis of Esters: Esterification

- Acid catalyzed reaction of alcohols and carboxylic acids to form esters is called Fischer esterification
- Fischer esterification is an equilibrium process
 - Ester formation is favored by use of a large excess of either the alcohol or carboxylic acid
 - Ester formation is also favored by removal of water

$$\begin{array}{c} O \\ \parallel \\ CH_3COH + CH_3CH_2OH & \stackrel{HA}{\longleftarrow} & CH_3COCH_2CH_3 + H_2O \\ Acetic acid & Ethanol & Ethyl acetate \\ \hline \\ C_6H_5COH + CH_3OH & \stackrel{HA}{\longleftarrow} & C_6H_5COCH_3 + H_2O \\ Benzoic acid & Methanol & Methyl benzoate \\ \end{array}$$

- Esterification with labeled methanol gives a product labeled only at the oxygen atom bonded to the methyl group
 - A mechanism consistent with this observation is shown below

$$C_6H_5C$$
 OH + CH_3 O H $\stackrel{HA}{\longleftarrow}$ C_6H_5C O OCH₃ + H_2O

$$H - \ddot{O} + \ddot{O$$

The carboxylic acid accepts a proton from the strong acid catalyst.

The alcohol attacks the protonated carbonyl group to give a tetrahedral intermediate.

A proton is lost at one oxygen atom and gained at another.

Loss of a molecule of water gives a protonated ester.

Transfer of a proton to a base leads to the ester.

- The reverse reaction is acid-catalyzed ester hydrolysis
 - Ester hydrolysis is favored by use of dilute aqueous acid

$$\begin{array}{c}
O \\
\parallel \\
C \\
OR'
\end{array}
+ H2O \xrightarrow{H_3O^+} C \\
R \xrightarrow{C}OH$$
+ R'-OH

- Esters from Acid Chlorides
 - Acid chlorides react readily with alcohols in the presence of a base (e.g. pyridine) to form esters

$$\mathbf{R} - \mathbf{C} + \mathbf{R}' - \ddot{\mathbf{O}} - \mathbf{H} \xrightarrow{-\mathbf{HCl}} \mathbf{R} - \mathbf{C}$$

$$: \mathbf{Cl}: \qquad \ddot{\mathbf{O}} - \mathbf{R}'$$

- Esters from Carboxylic Acid Anhydrides
 - Alcohols react readily with anhydrides to form esters

$$\begin{pmatrix} \mathbf{O} \\ \mathbf{CH_3C} - \end{pmatrix}_{2}\mathbf{O} + \mathbf{C_6H_5CH_2OH} \longrightarrow \begin{matrix} \mathbf{O} \\ \mathbf{H_3COCH_2C_6H_5} \\ \mathbf{Acetic} \\ \mathbf{Benzyl} \\ \mathbf{Benzyl} \\ \mathbf{alcohol} \end{matrix}$$
 Benzyl acetate

- Base-Promoted Hydrolysis of Esters: Saponification
 - Reaction of an ester with sodium hydroxide results in the formation of a sodium carboxylate and an alcohol

$$\begin{array}{c}
O \\
\parallel \\
RC - OR' + NaOH \xrightarrow{H_2O} & \parallel \\
Ester & Sodium carboxylate & Alcohol
\end{array}$$

- The mechanism is reversible until the alcohol product is formed
- Protonation of the alkoxide by the carboxylic acid is irreversible
 - This step draws the overall equilibrium toward the hydrolysis

A hydroxide ion attacks the carbonyl carbon atom.

The tetrahedral intermediate expels an alkoxide ion.

Transfer of a proton leads to the products of the reaction.

Lactones

 γ - or δ -Hydroxyacids undergo acid catalyzed reaction to give cyclic esters known as γ - or δ -lactones, respectively

- Lactones can be hydrolyzed with aqueous base
 - Acidification of the carboxylate product can lead back to the original lactone if too much acid is added

Synthesis of Amides

- Amides From Acyl Chlorides
 - Ammonia, primary or secondary amines react with acid chlorides to form amides
 - An excess of amine is added to neutralize the HCl formed in the reaction
 - Carboxylic acids can be converted to amides via the corresponding acid chloride

Reactant

Ammonia; R', R'' = H

1° Amine; R' = H, R'' = alkyl, aryl

 2° Amine; R', R'' = alkyl, aryl

Product

Unsubstituted amide; R', R'' = H

N-Substituted amide; R' = H, R'' = alkyl, aryl

N,N-Disubstituted amide; R',R'' = alkyl, aryl

- Amides from Carboxylic Anhydrides
 - Anhydrides react with 2 equivalents of amine to produce an amide and an ammonium carboxylate

$$\begin{pmatrix} O \\ \parallel \\ RC - \end{pmatrix}_{2}O + 2R' - \overset{"}{N}H \longrightarrow \overset{"}{RC} - \overset{"}{N} - R' + RCO_{2}^{-}R'R''NH_{2}$$

$$R', R'' \text{ can be H, alkyl or aryl}$$

- Reaction of a cyclic anhydride with an amine, followed by acidification yields a product containing both amide and carboxylic acid functional groups
- Heating this product results in the formation of a cyclic imide

- Amides from Carboxylic Acids and Ammonium Carboxylates
 - Direct reaction of carboxylic acids and ammonia yields ammonium salts

$$\begin{array}{c}
O \\
R
\end{array}$$

$$\begin{array}{c}
O \\
H
\end{array}$$

$$\begin{array}{c}
O \\
H
\end{array}$$

$$\begin{array}{c}
O \\
R
\end{array}$$

$$\begin{array}{c}
O \\
O^{-}NH_{4}^{+}
\end{array}$$
An ammonium carboxylate

- Some ammonium salts of carboxylic acids can be dehydrated to the amide at high temperatures
- This is generally a poor method of amide synthesis

$$\begin{array}{c}
O \\
R \\
C \\
O^{-} NH_{4}^{+}_{(solid)} \xrightarrow{heat} R - C \\
NH_{2}
\end{array}$$

 A good way to synthesize an amide is to convert a carboxylic acid to an acid chloride and to then to react the acid chloride with ammonia or an amine

- Dicylohexylcarbodiimide (DCC) is a reagent used to form amides
 from carboxylic acids and amines
- DCC activates the carbonyl group of a carboxylic acid

- Hydrolysis of Amides
 - Heating an amide in concentrated aqueous acid or base causes hydrolysis
 - Hydrolysis of an amide is slower than hydrolysis of an ester

$$\begin{array}{c}
O \\
\parallel \\
C \\
NH_{2}
\end{array}
+ H_{3}O^{+} \xrightarrow{H_{2}O \atop heat}
\begin{array}{c}
O \\
\parallel \\
C \\
OH
\end{array}
+ NH_{4}$$

$$\begin{array}{c}
O \\
\parallel \\
C \\
\ddot{N}H_{2}
\end{array}
+ Na^{+}OH^{-} \xrightarrow{H_{2}O} \begin{array}{c}
O \\
\parallel \\
C \\
O^{-}Na^{+}
\end{array}
+ \ddot{N}H_{3}$$

$$\begin{array}{c} \ddot{O} \\ \ddot{\downarrow} \\ \ddot{C} \\ \ddot{N}H_{2} \end{array} + \ddot{H} - \ddot{O} - \ddot{H} \Longrightarrow$$

The amide carbonyl accepts a proton from the aqueous acid.

A water molecule attacks the protonated carbonyl to give a tetrahedral intermediate. A proton is lost at one oxygen and gained at the nitrogen.

Loss of a molecule of ammonia gives a protonated carboxylic acid.

Transfer of a proton to ammonia leads to the carboxylic acid and an ammonium ion.

- Nitriles from the Dehydration of Amides
 - A nitrile can be formed by reaction of an amide with phosphorous pentoxide or boiling acetic anhydride

$$R - C \xrightarrow{P_4O_{10} \text{ or } (CH_3CO)_2O} R - C \equiv N: + H_3PO_4 \text{ or } CH_3CO_2H$$

$$: NH_2 \xrightarrow{\text{heat} (-H_2O)} A \text{ nitrile}$$

- Hydrolysis of Nitriles
 - A nitrile is the synthetic equivalent of a carboxylic acid because it can be converted to a carboxylic acid by hydrolysis

$$R - C = N : + H - O + H \longrightarrow R - C = NH \longleftrightarrow R - C = NH + : O - H \xrightarrow{slow}$$

$$Protonated nitrile$$

$$H - O : H$$

$$R - C = N: + -: \ddot{O} - H \implies R - C - \ddot{N}H - \frac{\ddot{O}H}{-OH} R - C - \ddot{N}H_{2} - \frac{\ddot{O}H}{-O} - \frac{\ddot{O}H$$

Decarboxylation

- Decarboxylation of Carboxylic Acids
 - β-Keto carboxylic acids and their salts decarboxylate readily when heated
 - Some even decarboxylate slowly at room temperature

• The mechanism of β-keto acid decarboxylation proceeds through a 6-membered ring transition state

$$R \xrightarrow{C} CH_{2} CH_{2} CH_{2} CH_{3}$$

$$\beta$$
-CO₂
-C

Decarboxylation

• Carboxylate anions decarboxylate rapidly because they form a resonance-stabilized enolate

Malonic acids also decarboxylate readily

$$\begin{array}{c|cccc} \mathbf{O} & R & O & R & O \\ \parallel & \parallel & \parallel & \parallel \\ \mathbf{HOC-C-COH} & \xrightarrow{100-150^{\circ}\mathrm{C}} & \mathrm{H-C-COH} + \mathbf{CO_2} \\ \parallel & R & & R & \\ \mathbf{A} & \mathbf{malonic} & \mathbf{acid} & \end{array}$$