Key points about acids and bases so far

- Pay attention to charge on the acid or base
- There is always an acid and base on the reactant side and their conjugate acid or base on the product side
- An increase in K_a causes a decrease in K_b
- A decrease in K_a causes an increase in K_b
- K_a = equilibrium constant, water + weak acid
 When you have two different weak acids the larger the K_a the stronger the acid

Two clicker questions to practice what we went over in the previous lecture

A) HPO_4^{2-} base on reactant side
B) HCO_3^- acid on reactant side (has an H^+)
C) CO_3^{2-} base
D) H_2PO_4^- acid (has an H^+ and one more H^+ than HPO_4^{2-})

Ka Reaction

$\text{HA} \text{(aq)} + \text{H}_2\text{O} \text{(l)} \rightleftharpoons \text{A}^- \text{(aq)} + \text{H}_3\text{O}^+ \text{(aq)}$

HA-Weak Acid

$K_a = [\text{A}^-] [\text{H}_3\text{O}^+] / [\text{HA}]$

Weak Acid

$\text{H}_2\text{PO}_4^-(aq) + \text{H}_2\text{O} (l) \rightleftharpoons \text{HPO}_4^{2-} (aq) + \text{H}_3\text{O}^+ (aq)$

H_2PO_4^- (aq)- acid loses H^+
H_3O^+ (aq)- base accepts H^+

Kb Reaction

$\text{B} (aq) + \text{H}_2\text{O} (l) \rightleftharpoons \text{HB}^+ (aq) + \text{OH}^- (aq)$

$\text{H}_2\text{O} (l)$- acid loses and H^+ to OH^- (aq)
$\text{B} (aq)$- base , HB^+ gained the the H^+

$K_b = [\text{HB}^+] [\text{OH}^-] / [\text{B}]$

Could H_2PO_4^- be a weak base? Yes

$\text{H}_2\text{PO}_4^-(aq) + \text{H}_2\text{O} (l) \rightleftharpoons \text{OH}^- (aq) + \text{H}_3\text{PO}_4$

H_2PO_4^- = base , H_3PO_4= accepts the H^+
$\text{H}_2\text{O} (l)$ = acid in this case because it loses an H^+ and become OH^- on the product side

Could CO_3^{2-} be an acid? No

$\text{CO}_3^{2-} + \text{H}_2\text{O} \rightarrow ?$

-could not be an acid because there is no H^+ for the carbonate to give away
Could there be a Kb reaction for CO$_3^{2-}$? Yes

CO$_3^{2-}$ + H$_2$O \rightleftharpoons HCO$_3^-$ + OH$^-$

CO$_3^{2-}$ – base
HCO$_3^-$ accepts an H$^+$ from CO$_3^{2-}$
H$_2$O – acid loses an H$^+$ to OH$^-$

Base:
HPO$_4^{2-}$ $K_a = 3.6 \times 10^{-13}$ would be for its weak acid reaction, but we don’t need K_a for it for this problem

Acids:
HCO$_3^-$ $K_a = 5.61 \times 10^{-11}$
H$_2$PO$_4^-$ $K_a = 6.23 \times 10^{-8}$

The question was, does the equilibrium for the following rxn lie to the right or to the left:
HPO$_4^{2-}$ (aq) + HCO$_3^-$ (l) \rightleftharpoons CO$_3^{2-}$ (aq) + H$_2$PO$_4^-$ (aq)

B) Equilibrium lies to left
- Need to look at the acid values to find which equilibrium constant for the acid is larger, and that’s the stronger acid so it wins
 - $K_a = 6.23 \times 10^{-8}$ is larger than $K_a = 5.61 \times 10^{-11}$, so H$_2PO_4^-$ is the stronger acid

What is the pH scale?
- an increase in H$^+$ causes a decrease in pH
- a decrease in H$^+$ causes an increase in pH
- the more acidic - the smaller the pH more H$^+$

What does pH scale mean mathematically?
Scale A - linear
Scale C - logarithmic
pH doesn’t always have to be an integer

What you need to be good at?
Molarity = mols solute/L solution (imp. during titrations)

Adding strong acid to strong base or 1 L of water
HCl = strong acid so it completely dissociates in water, into 1mol H$^+$ ions plus 1 mol Cl$^-$ ions
H₂SO₄ = the first H⁺ is strong, but the second one (on HSO₄⁻) is weak acid doesn’t
dissociate very much, so when you have 1 mol of H₂SO₄, you get a little more than 1 mol
H⁺, because you get 1 mol of H⁺ from the first dissociation that is complete, and a tiny
bit more H⁺ from the dissociation of HSO₄⁻ which is a weak acid so only a tiny bit of it
dissociates. So, if you prepare a solution of 1 mol of H₂SO₄ in water, there will be lots of
solutes in the solution:
 • there will be no H₂SO₄
 • there will be a little more than 1 mol of H⁺
 • there will be a little less than 1 mol of HSO₄⁻
 • there will be a tiny bit (much less than 1 mol) of SO₄²⁻

NaOH = strong base, dissociates into 1 mol OH⁻ ions and 1 mol Na⁺ ions

Example of strong base calculations

a) NaOH- strong base (arrhenius base)
 NaOH- when added to water completely dissociates
 1 mol NaOH 1 mol OH⁻
 .0012 M NaOH solution:

 \[
 [\text{OH}^{-}] = 0.0012 \text{ M}
 \]

 \[
 \text{pOH} = -\log(0.0012) = 2.92
 \]

 \[
 \text{pH} = 14 - 2.92 = 11.08
 \]

 11.08: when take the log of something you get the significant digits after the
decimal place (2 sig figs)

b) Sr(OH)₂ is a strong base
 pH= 10.46
 Goal: to find the concentration of Sr(OH)₂
 find the concentration of OH⁻, get that from pOH, get pOH from pH

 1) \[\text{pOH} = 14 - \text{pH} \]
 \[
 \text{pOH} = 14 - 10.46
 \]
 \[
 \text{pH} = 3.54
 \]

 2) \[[\text{OH}^{-}] = 10^{-\text{pOH}} \]
 \[
 = 10^{-3.57}
 \]
 \[
 = .000288 \text{ M (keep more sig figs than needed, round back at the end)}
 \]

 3) \[0.000288 \text{ mol OH}^{-} / \text{ L} \times 1 \text{ mol Sr(OH)₂} / 2 \text{ mol OH}^{-} \]
 \[
 = .00014 \text{ M the Sr(OH)₂ concentration}
 \]

How much does a weak acid or base dissociate?
Weak acids do not completely dissociate (they mostly stay whole and do not fully
break apart into H⁺ and the conjugate base), need to write an equilibrium table