Determining Rate Laws: \(\text{rate} = k [A]^m [B]^n \)

1) Find \(m \) and \(n \)
 a) \(\frac{\text{rate}_1}{\text{rate}_2} = \frac{k [A]^m [B]^n}{k [A]^m [B]^n} \) or \(\frac{\text{rate}_1}{\text{rate}_2} = \frac{k [A]^m [B]^n}{k [A]^m [B]^n} \)
 b) \(\frac{\text{rate}_2}{\text{rate}_2} = \left(\frac{[A]}{[B]} \right)^m \) or \(\frac{\text{rate}_2}{\text{rate}_2} = \left(\frac{[A]}{[B]} \right)^n \)

2) Find \(k \)
 a) \(\text{rate}_a = k [A]^m [B]^n \)

Clicker Question:
\(A(g) \rightarrow 2C(g) \)

1 unit of \(A \) makes 2 units of \(C \), so \(C \) is appearing 2x as fast as \(A \) is disappearing (or \(A \) is disappearing ½ as fast as \(C \) is appearing).

\(\frac{1}{2}(6.2 \times 10^{-2}) = 3.1 \times 10^{-2} \), therefore -3.1\(\times 10^{-2} \) is the answer (negative sign for disappearing)

Half-life: time it takes for ½ of the substance to react

1. time of ½ life only depends on the \(k \) value (rest are constants)
 a. \([A_i] \) is going to become ½ \([A_o] \)
 i. \(\frac{[A_{0,2}]}{[A_{0,1}]} = \frac{1}{2} \)
 b. \(\ln[A_i] = \ln[A_o] - k t \)
 i. \(kt = \ln \left(\frac{[A_0]}{[A_i]} \right) \)
 ii. \(K = \frac{t_{\text{half-life}} = \ln 2}{k} \)
 c. \(t_{\text{half-life}} = \frac{\ln 2}{k} \)

2. \([A_i] = \frac{1}{2} \times \text{half-life} [A_o] \)

 a. \(\frac{1}{2} \times \text{half-life} \) # of half-lives
 b. \(t = \text{time elapsed} \)
 c. \([A_{\text{end}}] = \frac{1}{2} \times \frac{t_{\text{end}}}{t_{\text{half-life}} [A_{\text{start}}]} \)
Causes of Reaction Rates

1. Concentration Rates
 a. \([A] \text{ and } [B]\)
 i. More collisions \(\rightarrow\) more reactions

2. Temperature
 a. \(T\)
 i. More collisions \(\rightarrow\) more reactions

3. Frequency Factor (% of collisions that happen at the right orientations of the reactants to create products)
 a. \(A\)
 i. Higher % \(\rightarrow\) more reactions

4. Activation Energy (Energy required to start off the reaction)
 a. \(E_a\)
 i. Lower \(E_a\) \(\rightarrow\) more reactions

Summed up by:

5.
 \[k = A \ e^{-\frac{E_a}{RT}} \]

Can be rewritten by:

6.
 \[(\ln k) = (\ln A) - \left(\frac{E_a}{R}\right) \times \left(\frac{1}{T}\right) \]

7.
 \[(y \text{ value}) = (y \text{ intercept}) - (slope) \times (x \text{ value}) \]

Therefore:

8.
 \[\frac{E_a}{R} = \frac{\Delta A}{\Delta T} \]