Chem 116
Fall 2006
Prof. Sevian

Which of the following salts, when added to water, would produce the most acidic solution?
a) KBr
b) $\mathrm{NH}_{4} \mathrm{NO}_{3}$
c) AlCl_{3}
d) $\mathrm{Na}_{2} \mathrm{HPO}_{4}$
(Assume the comparison is of equal molar quantities of each one added to water.)

Hydrolysis example problem similar to a text book exercise, Ex. 16.17, p. 701. From lecture notes 11-9-06.

Here is a comparison of what happens chemically and mathematically when each of these salts is added to water. Remember, a "salt" in the Bronsted-Lowry scheme is a conjugate of either an acid or a base, and sometimes both.
KBr
When KBr is added to water, it
dissociates into K^{+}and Br^{-}
into K and Br
$\mathrm{KBr}(s) \rightarrow \mathrm{K}^{+}(a q)+\mathrm{Br}^{-}(a q)$
Does K^{+}have a conjugate acid or base? No. It cannot accept an H^{+}and it cannot donate an H^{+}.

Does Br^{-}have a conjugate acid or base? Yes, it can accept an H^{+}, so Br^{-}is a base and HBr is its conjugate acid.

What reaction could happen when Br^{-}reacts with water? $\mathrm{Br}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{HBr}+\mathrm{OH}^{-}$ But this reaction does not occur to any reasonable extent because HBr is a strong acid, so the equilibrium in the reaction lies very strongly to the left.

Since no new H^{+}or OH^{-}are produced, the resulting KBr (aq) solution remains as neutral as the original water solvent.
$\mathrm{pH}=7$

When $\mathrm{NH}_{4} \mathrm{NO}_{3}$ is added to water, it dissociates into NH_{4}^{+}and $\mathrm{NO}_{3}{ }^{-}$
$\mathrm{NH}_{4} \mathrm{NO}_{3}(s) \rightarrow \mathrm{NH}_{4}^{+}(a q)+\mathrm{NO}_{3}^{-}(a q)$
Does $\mathrm{NH}_{4}{ }^{+}$have a conjugate acid or base? Yes. It can donate an H^{+}, so $\mathrm{NH}_{4}{ }^{+}$is an acid and NH_{3} is its conjugate base.

Does $\mathrm{NO}_{3}{ }^{-}$have a conjugate acid or base? Yes, it can accept an H^{+}, so $\mathrm{NO}_{3}{ }^{-}$is a base and HNO_{3} is its conjugate acid.

What reaction could happen when $\mathrm{NH}_{4}{ }^{+}$reacts with water?
$\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}$
This reaction occurs, since $\mathrm{NH}_{4}{ }^{+}$is a weak acid and NH_{3} is a weak base (i.e., neither one is strong).

No reaction occurs between $\mathrm{NO}_{3}{ }^{-}$and water because HNO_{3} is a strong acid (same argument as for Br^{-}at left).

Therefore, when $\mathrm{NH}_{4} \mathrm{NO}_{3}$ is added to water, the result is to increase the $\mathrm{H}_{3} \mathrm{O}^{+}$concentration, so the solution becomes acidic.
$\mathrm{pH}<7$

When AlCl_{3} is added to water, it dissociates into Al^{3+} and Cl^{-}
$\mathrm{AlCl}_{3}(s) \rightarrow \mathrm{Al}^{3+}(a q)+3 \mathrm{Cl}^{-}(a q)$ The aluminum ions form complexes with water. Al^{3+} ions don't exist in water, they become $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ complex ions.

The aluminum complex ion can act like an acid and donate an H^{+}to become $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})\right]^{2+}$.

The Cl^{-}ion can accept an H^{+}, so Cl^{-} is a base and HCl is its conjugate acid. No reaction occurs between Cl^{-}and water because HCl is a strong acid (same argument as for Br^{-}at left).

The reaction that occurs between the aluminum complex ion and water is $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows$
$\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})\right]^{2+}+\mathrm{H}_{3} \mathrm{O}^{+}$
This reaction occurs since the complex on the reactant side is a weak acid, and the complex on the product side is a weak base (i.e., neither one is strong).

Therefore, when AlCl_{3} is added to water, the result is to increase the $\mathrm{H}_{3} \mathrm{O}^{+}$concentration, so the solution becomes acidic.
$\mathrm{pH}<7$
$\mathrm{Na}_{2} \mathrm{HPO}_{4}$
When $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ is added to water, it dissociates into Na^{+}and $\mathrm{HPO}_{4}{ }^{2-}$
$\mathrm{Na}_{2} \mathrm{HPO}_{4}(s) \rightarrow 2 \mathrm{Na}^{+}(a q)+\mathrm{HPO}_{4}{ }^{2-}(a q)$
Does Na^{+}have a conjugate acid or base? No. It cannot accept an H^{+}and it cannot donate an H^{+}.

Does $\mathrm{HPO}_{4}{ }^{2-}$ have a conjugate acid or base? Yes, it actually has both. It could accept an H^{+}, so $\mathrm{HPO}_{4}{ }^{2-}$ is a base and $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$is its conjugate acid. It could donate an H^{+}, so $\mathrm{HPO}_{4}{ }^{2-}$ is also an acid and its conjugate base is PO_{4}^{3-}.

The reactions that could occur when $\mathrm{HPO}_{4}{ }^{2-}$ is added to water are:
$\mathrm{HPO}_{4}{ }^{2-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{OH}^{-}$
and
$\mathrm{HPO}_{4}{ }^{2-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{PO}_{4}{ }^{3-}+\mathrm{H}_{3} \mathrm{O}^{+}$
The first one is a K_{b} reaction, and from the table of K_{a} values, you can get K_{b} for $\mathrm{HPO}_{4}{ }^{2-}$ acting as a base by $K_{a} K_{b}=K_{w}$. So, K_{b} for $\mathrm{HPO}_{4}{ }^{2-}$ is 1.61×10^{-7}.

The second one is a K_{a} reaction, and from the table of K_{a} values, K_{a} for $\mathrm{HPO}_{4}{ }^{2-}$ is 3.6×10^{-13}.

Comparing the two reactions, the first one produces much more than the second because the equilibrium constant for the first one is much larger than the equilibrium constant for the second. Therefore, when $\mathrm{HPO}_{4}{ }^{2-}$ is added to water, the result is to increase the OH^{-}concentration, so the solution becomes basic.
$\mathrm{pH}>7$

So, two of the choices produce acidic solutions: $\mathrm{NH}_{4} \mathrm{NO}_{3}$ and AlCl_{3}. The question now is, which one of them produces the most acidic solution. We want to know which of these reactions will produce more $\mathrm{H}_{3} \mathrm{O}^{+}$:

```
\(\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}\)
    \(K_{a}=5.65 \times 10^{-10}\)
or
\(\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})\right]^{2+}+\mathrm{H}_{3} \mathrm{O}^{+} K_{a}=7.9 \times 10^{-6}\)
```

So we just compare their K_{a} values. Whichever one has the larger K_{a} value must produce more $\mathrm{H}_{3} \mathrm{O}^{+}$. Therefore, the aluminum complex wins.
Answer: AlCl_{3}
Note: On an exam you wouldn't need to go to all this work, but I showed every single detail of the argument just to make everything clear. On an exam, the fastest way to solve this problem would be to split each ionic compound into its constituent ions. The + ion might be an acid if added to water. If so, it would produce some $\mathrm{H}_{3} \mathrm{O}^{+}$. The - ion might be a base if added to water. If so, it would produce some OH^{-}. In this question, since you're looking for the most acidic solution, you would just move forward with comparing the + ions that produce $\mathrm{H}_{3} \mathrm{O}^{+}$to see which is a stronger acid.

