Chem 115 notes

The Game of Quantum Numbers

Degenerate = all having same energy
$\underline{1}$ orbital
$0=\mathrm{s}$
$1=p$
$2=\mathrm{d}$
$3=\mathrm{f}$
$\mathrm{m}_{l}=0 \rightarrow \pm l$
if $l=1$ there are three possible values for m_{l}
if $l=2$ there are five possible values for m_{l}
if $l=1 \rightarrow \mathrm{~m}_{l}=0, \pm 1$
if $l=2 \rightarrow \mathrm{~m}_{l}=0, \pm 1, \pm 2$
$\mathrm{n}=3$
$l=2$
= 3d orbital
$\mathrm{n}=4$
$l=1$
$=4 \mathrm{p}$ orbital

Where Orbitals Are

If $l=0$ then $\mathrm{m}_{l}=0$
*Shape of orbital shows how electron spends most of its time
*In an atom, majority of space is taken up by electrons

Summary of the First Three Numbers

*Boxes show where on energy axis electrons can go
${ }^{*} \mathrm{~m}_{l}$ values \rightarrow places electrons can go
*If there are 3 values ($0, \pm 1$) = 3 places electrons can go, there are 3 degenerate orbitals
*This QM model can be used to predict emission of elements other than hydrogen

Orbital Energies in Hydrogen (Only)

*Hydrogen has only one electron - spends most of its time in 1s orbital (ground state)
*Energy of different l values of hydrogen orbitals is degenerate

Orbital Energies in Multielectron Atoms
*Elements other than Hydrogen have l energy levels that are not degenerate (not straight line)
*Ground state of an element is when electrons are in the lowest possible energy state *Elements have only one ground state

Magnetism of Materials

$* 4^{\text {th }}$ quantum number is where the electron is
*Some materials will magnetize others will not
*Electricity and magnetism are coupled

Magnetism of Materials

*In every energy level - two electrons can fit, but have to be spinning the opposite way

How to Find the Ground State

*l can only go up to n-1
*If one electron is spin up ($m_{s}=+1 / 2$), the other electron must be spin down ($m_{s}=-1 / 2$).
*You need to know if a particular set of quantum numbers specifies an orbital which is possible
or not
$\mathrm{n}=3$
$l=1 \quad \rightarrow 3$ p orbital
$\mathrm{m}_{l}=0$
$\mathrm{n}=4$
$l=1 \quad \rightarrow$ not possible because m_{l} cannot be 2 (can only go up to $\pm l$)
$\mathrm{m}_{l}=2$
$\mathrm{n}=2$
$l=2 \quad \rightarrow$ not possible because l cannot can only go up to $\mathrm{n}-1$
$\mathrm{m}_{l}=0$
*Quantum mechanics explains why the periodic table has its structure

Aufbau (Building) Elements

*No two electrons can have exact same numbers (one of the four must be different)
*An up arrow and a down arrow = 2 electrons in the same orbital with opposite spins
*Electrons spin up until all electrons are spinning up in one orbital, then they are paired with electrons that are spinning down

- Put up arrows in all boxes of an orbital
- Then go back and enter the down arrows
*Key is to give 2 different m_{l} values - any two of the possible - when writing the orbital states

Book's Representation

$1 s^{2} 2 s^{1}=2$ electrons in 1s orbital (having opposite spins), 1 electron in 2 s orbital
*When writing shorthand notation, need to know if there are degenerate energy levels
*Hint to identifying elements by shorthand notation
Which corresponds to Neon?

1. Add superscripts together (total number of electrons)
2. Total \# electrons = Atomic number
3. Atomic number identifies element

Aufbau (Building) Elements

*Very important

- Valence electrons
- Core electrons
*Noble gas core
Core $=$ Number of electrons in first noble gas underneath the element in question Valence $=$ Number of electrons outside of the core (extra electrons)

Scandium
spdf notation written with noble gas core

Germanium

[Ar] $4 \mathrm{~s}^{2} 3 \mathrm{~d}^{10} 4 \mathrm{p}^{2}$
*Argon is the closest noble gas below Germanium
*Start counting electrons at the lowest orbital
*Argon has 18 Electrons (core)
*There are 14 electrons left over (valence)
*To know the noble gas core, you need the periodic table

The game of Quantum Mechanics: What you need to know

Know this slide

