Chem 115 notes 4/15/08

The Game of Quantum Numbers

Degenerate = all having same energy

$\begin{array}{ccc} \underline{l} & \text{orbital} \\ 0 & = & s \\ 1 & = & p \\ 2 & = & d \\ 3 & = & f \end{array}$

$$\mathbf{m}_l = 0 \rightarrow \underline{+} l$$

if l = 1 there are three possible values for m_l if l = 2 there are five possible values for m_l

if
$$l = 1 \rightarrow m_l = 0, \pm 1$$

if $l = 2 \rightarrow m_l = 0, \pm 1, \pm 2$

$$n = 3$$

$$l = 2$$

$$= 3d \text{ orbital}$$

$$n = 4$$

$$l = 1$$

$$= 4p \text{ orbital}$$

Where Orbitals Are

If l = 0 then $m_l = 0$

*Shape of orbital shows how electron spends most of its time

*In an atom, majority of space is taken up by electrons

Summary of the First Three Numbers

- *Boxes show where on energy axis electrons can go
- * m_l values \rightarrow places electrons can go
- *If there are 3 values $(0, \pm 1) = 3$ places electrons can go, there are 3 degenerate orbitals
- *This QM model can be used to predict emission of elements other than hydrogen

Orbital Energies in Hydrogen (Only)

- *Hydrogen has only one electron spends most of its time in 1s orbital (ground state)
- *Energy of different *l* values of hydrogen orbitals is degenerate

Orbital Energies in Multielectron Atoms

*Elements other than Hydrogen have *l* energy levels that are not degenerate (not straight line)

*Ground state of an element is when electrons are in the lowest possible energy state

*Elements have only one ground state

Magnetism of Materials

- *4th quantum number is where the electron is
- *Some materials will magnetize others will not
- *Electricity and magnetism are coupled

Magnetism of Materials

*In every energy level – two electrons can fit, but have to be spinning the opposite way

How to Find the Ground State

*l can only go up to n - 1

*If one electron is spin up $(m_s = +\frac{1}{2})$, the other electron must be spin down $(m_s = -\frac{1}{2})$.

*You need to know if a particular set of quantum numbers specifies an orbital which is possible or not

n = 3

l = 1 \rightarrow 3p orbital

 $m_l = 0$

n = 4

l = 1 \rightarrow not possible because m_l cannot be 2 (can only go up to $\pm l$)

 $m_l = 2$

n = 2

l = 2 \rightarrow not possible because l cannot can only go up to n - 1

 $m_l = 0$

Aufbau (Building) Elements

- *No two electrons can have exact same numbers (one of the four must be different)
- *An up arrow and a down arrow = 2 electrons in the same orbital with opposite spins
- *Electrons spin up until all electrons are spinning up in one orbital, then they are paired with electrons that are spinning down
 - Put up arrows in all boxes of an orbital
 - Then go back and enter the down arrows
- *Key is to give 2 different m_l values any two of the possible when writing the orbital states

Book's Representation

 $1s^22s^1 = 2$ electrons in 1s orbital (having opposite spins), 1 electron in 2s orbital

*When writing shorthand notation, need to know if there are degenerate energy levels

*Hint to identifying elements by shorthand notation

Which corresponds to Neon?

^{*}Quantum mechanics explains why the periodic table has its structure

- 1. Add superscripts together (total number of electrons)
- 2. Total # electrons = Atomic number
- 3. Atomic number identifies element

Aufbau (Building) Elements

*Very important

- Valence electrons
- Core electrons

*Noble gas core

Core = Number of electrons in first noble gas underneath the element in question Valence = Number of electrons outside of the core (extra electrons)

Scandium

spdf notation written with noble gas core

Germanium

 $[Ar] 4s^2 3d^{10} 4p^2$

- *Argon is the closest noble gas below Germanium
- *Start counting electrons at the lowest orbital
- *Argon has 18 Electrons (core)
- *There are 14 electrons left over (valence)
- *To know the noble gas core, you need the periodic table

The game of Quantum Mechanics: What you need to know Know this slide