CHEM 115
Valence Bond Theory and Molecular Orbital Theory

Lecture 26
Prof. Sevian

Agenda for Lectures 25 and 26

- Using bond enthalpies to estimate enthalpy of reaction
- Lewis structures when expanded octets are possible
- Molecular dipoles
- Valence shell electron pair repulsion theory (VSEPR)
- Return Exam 3 at end of Lecture 25

- Valence bond theory
 - Hybridization of atomic orbitals to prepare for bonding
 - Single, double and triple bonding
 - σ and π bonding orbitals
 - Predicting bond angles
 - Refrain molecular dipoles
- Molecular orbital theory
- Give out “individualized academic prescriptions” at end of Lecture 26
Announcements

- If you weren’t in class last Thursday, you can pick up your Exam 3 at my office (W-4-181) during normal business hours - someone there will get it for you.

Reminders:

- Final Exam has been scheduled for:

 Tuesday, May 19

 3:00-6:00 PM

 Lipke Auditorium (S-2-003A), which is our regular classroom

- Final exam is comprehensive (covers the whole semester)
- Official ACS exam
- 70 questions, all multiple-choice
- There will be some questions on topics that we haven’t covered (e.g., gas laws) - these will be extra credit if you get them right, and no penalty if you get them wrong, so it’s to your advantage to guess

About the i>clickers

- There will not be any clicker questions today
- If you borrowed an i>clicker from me, you can return it either at the final exam, or to my office (W-4-181) during normal business exam hours, where someone will check it in

 - Hopefully the follow two things will not apply to anyone:
 - If you do not return your i>clicker, you will receive an INC and then an administrative F in the class
 - If you lost the i>clicker I loaned you, you can buy a new one and turn that in to me instead.
How do bond polarities sum to determine molecular polarity?

A molecule is a dipole:
1. If it has at least one bond in it that is polar covalent and
2. If the bond dipoles do not cancel each other out (cancellation happens when bond dipoles are symmetrically located)

Remember how to determine whether a bond is a dipole?
Difference in electronegativities of the two atoms in the bond
- No difference: perfectly covalent
- Some difference (as between non-metals): polar covalent
- Very different (as between a metal and a non-metal): ionic

These are some molecules that contain polar bonds, but not all of the molecules are polar
Molecular dipole example

The strength of a molecule’s dipole explains many properties of the compound, such as:

- How high (or low) the melting and boiling points are
- How well the compound can dissolve in polar or nonpolar solvents
- How reactive the compound is, and where its reactivity sites are

Dipole moment of the molecule is the vector sum of the three bond dipoles

1.74 D

*This is an average - the dipole moment fluctuates as the single bonds twist and vibrate

A question to go over
(would have been a clicker question)

Which of the following molecules would be expected to have the largest molecular dipole moment?

(A) CO₂

(C) C₂H₅OH

(B) CH₂O

(D) CH₄

Also review from last lecture: What are all the bond angles in these molecules?
Summary of today’s class

- Valence bond theory
 - σ bonds are localized to existing between two atoms. π bonds can be localized also, or can be delocalized across molecule (e.g., benzene)
 - Hybridization of different combinations of s, p and d atomic orbitals accounts for electron pair geometry, i.e., explains how bond angles arise
 - Single bonds are always σ type, orbitals overlap directly on axis of bond
 - Second and third bonds are always π type, off axis by atomic p-orbital overlap (i.e., to make π bonds in molecules, must reserve some atomic p-orbitals and not hybridize them)
- Molecular orbital theory
 - All bonds are delocalized across entire molecule
 - Mix together all atomic orbitals of every atom and determine new molecular orbital energies, then populate with electrons according to same Aufbau, Pauli and Hund
 - No molecular geometry predictions, but paramagnetism predictions more accurate

Valence Bond Theory

A mathematical model that explains why the electron domain geometries are the way they are

Central ideas:
1. Atomic orbitals initially form hybrids to get ready for bonding to form molecules/ions (costs a little bit of energy – less stable)
2. Bonds in molecules/ions are formed by the overlap of atomic orbitals (win back a lot of energy – much more stable)

How VB theory explains molecular geometries and the inversely proportional bond order-bond length relationship:
1. Bond angles are determined by where the σ bonds are
2. π bonds, if present, add strength off axis, and also pull the atoms closer together so that the reserved p-orbitals can overlap better
Why it costs a little energy, endothermic, to form hybrid orbitals (but more than that energy is won back when bonds, which are exothermic, form)

Carbon atom’s valence with a 2s and three 2p orbitals

Carbon atom’s valence with four sp³ hybridized orbitals ready to make four σ bonds

Explains tetrahedral electron domain geometry

Four single bonds between one carbon and four hydrogens

1. The first bond between two atoms: Overlap occurs on the axis of bond ⇒ σ orbital
 - Only one σ bonding orbital can form between two atoms
 - Bonds that form on the axis between two atoms are always σ type
Double bond between two Carbons

2. The second (and third) bond between two atoms (if a σ bond has already formed): Overlap occurs outside the axis of a bond ⇒ π orbital
 - It is possible to form either one or two π bonds between atoms
 - Bonds that occur off-axis are always π type

How?

Reserving a p-orbital for making a π bond

Carbon atom with a 2s and three 2p orbitals

Carbon atom with three sp² hybridized orbitals and one 2p orbital left over, ready to make 3 σ bonds and 1 π bond

Expects triangular planar electron domain geometry
Double bond between two Carbons

2. The second (and third) bond between two atoms (if a σ bond has already formed): Overlap occurs outside the axis of a bond ⇒ π orbital
 - It is possible to form one or two π bonds between atoms
 - What are the bond angles?

Another view of forming C₂H₄
Reserving two p-orbitals for making two \(\pi \) bonds

Carbon atom with a 2s and three 2p orbitals

Carbon atom with two sp hybridized orbitals and two 2p orbitals left over, ready to make 2 \(\sigma \) bonds and 2 \(\pi \) bonds

Explains linear electron domain geometry

Triple bond between two Carbons

2. The second (and third) bond between two atoms (if a \(\sigma \) bond has already formed): Overlap occurs outside the axis of a bond \(\Rightarrow \pi \) orbital
 - It is possible to form one or two \(\pi \) bonds between atoms
 - What are the bond angles?
Another view of forming C$_2$H$_2$

Valence bond theory leads to predictions of bond angles that concur with experimentally observed bond angles.
Other Atomic Orbital Hybridizations

- **sp^3d**
 - Four 3d orbitals remain
 - Five equal 3sp^3d hybrids

- **sp^3d^2**
 - Three 3d orbitals remain
 - Six equal 3sp^3d^2 hybrids

These can only occur for elements that have level 3 and higher atomic orbitals as valence shell.

Consequences of \(\pi \) Bonding

- Atoms can twist around \(\sigma \) bond
- When \(\pi \) bonds are present in addition to a \(\sigma \) bond, the \(\pi \) bond(s) locks the atoms in a specific orientation (molecule is restricted to no twisting around the \(\sigma \) bond)
- Isomer (= same parts) can result
- Simple example: cis- and trans- versions of 1,2-dichloroethylene

- Much of nature works by recognizing specific isomers to the exclusion of others
- What are the bond angles?
Resonance and Delocalization of Electrons in π Bonds (example: benzene)

Macroscopic evidence
- Laboratory data indicate that benzene has a planar, symmetrical structure

Particle level – valence bond theory prediction
- Delocalized means not localized to a specific location, but instead spread out over many locations
- For example, in benzene, delocalization occurs with bonding electrons in π bonds

Symbolic representation

Two resonance forms

Two competing theories that predict various properties of molecules

Valence bond theory
- Theory of quantum mechanical wave functions that would satisfy Schrodinger equation for the molecule (if it could be solved)
- Lewis structure’s electron pairs translated into quantum mechanics
- Electrons in a particular bond are localized to specific valence bond orbitals

Molecular orbital theory
- Theory of quantum mechanical wave functions that would satisfy Schrodinger equation for the molecule (if it could be solved)
- Wave functions (molecular orbitals) are formed from all bonding electrons in molecule
- Electrons in all bonds are spread out (delocalized) over all molecular bonding orbitals in molecule

Mathematically, the approaches are different. Results (predictions) are often the same.
Molecular Orbital Theory

Central ideas:
- Atomic orbitals on all atoms mathematically combine to form molecular orbitals.
- Electrons then populate the molecular orbitals and are delocalized across entire molecule.

Mathematical combination of the 1s wavefunctions on two individual hydrogen atoms to form two molecular orbitals

Molecular Orbital Theory Principles

1. Orbitals are conserved. The total number of molecular orbitals equals the total number of atomic orbitals that contributed.
2. Conservation of energy is obeyed. Bonding molecular orbitals have lower energy than the average of the contributing atomic orbitals. Antibonding molecular orbitals have higher energy.
3. When assigning electrons to molecular orbitals for ground state electron configuration prediction, the Aufbau rule, Pauli exclusion principle and Hund’s rule still apply.
 - Bond order can be predicted by comparing how many bonding orbitals are filled vs. how many antibonding orbitals are filled.
 - Paramagnetism can be predicted as with electronic configurations of atoms.
4. The more similar the atoms are, the more effective the bonding can be. (Molecular orbitals form most effectively when the atoms that contribute the atomic orbitals are most similar.)
Compare and Learn

Molecular orbital theory prediction for

H₂ molecule forming from two isolated H atoms

Net 1 bond because 1 pair of electrons in a bonding orbital

Molecular orbital theory prediction for

He₂ molecule forming from two isolated He atoms

Net 0 bonds because equal pairs of electrons in bonding and antibonding orbitals

Molecular Orbitals Also Form from Atomic p-Orbitals

σ molecular orbitals (bonding and antibonding) form from the atomic p-orbitals (one on each atom) that are along axis of bonding

π molecular orbitals (bonding and antibonding) form from the atomic p-orbitals (two on each atom) that are perpendicular to the axis of bonding
Diatomics Formed from Elements in Second Period of Periodic Table

Entire Molecular Orbital Energy Level Diagram for some of the Second-Period Diatomics

Note: only the valence level (n=2) is shown here.
MO energy ordering depends on strength of 2s-2p\(_z\) interactions. Results in different MO ordering for second row diatomics.

This order for O\(_2\), F\(_2\), Ne\(_2\)

This order for B\(_2\), C\(_2\), N\(_2\)

Compare

<table>
<thead>
<tr>
<th>Large 2s-2p interaction</th>
<th>Small 2s-2p interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B(_2)</td>
</tr>
<tr>
<td>(\sigma^2_2p)</td>
<td></td>
</tr>
<tr>
<td>(\pi^2_2p)</td>
<td></td>
</tr>
<tr>
<td>(\pi^2_2p)</td>
<td></td>
</tr>
<tr>
<td>(\sigma^2_2s)</td>
<td>1</td>
</tr>
<tr>
<td>Bond order</td>
<td>1</td>
</tr>
<tr>
<td>Bond enthalpy (kJ/mol)</td>
<td>299</td>
</tr>
<tr>
<td>Bond length (Å)</td>
<td>1.59</td>
</tr>
<tr>
<td>Magnetic behavior</td>
<td>Paramagnetic</td>
</tr>
</tbody>
</table>
Paramagnetic vs. diamagnetic

As before, results from one or more spin-unpaired electrons

As before, when all electrons are spin-paired

(a) The sample is first weighed in the absence of a magnetic field.

(b) When a field is applied, a diamagnetic sample moves out of the field and thus appears to have a lower mass.

(c) A paramagnetic sample is drawn into the field and thus appears to gain mass.

Valence Bond Theory vs. Molecular Orbital Theory for O₂

Lewis diagram predicts sp² hybridization on O atoms

1. Molecular shape predicted to be flat
2. Correct bond order 2 predicted
3. All orbitals are occupied by pairs of electrons – not paramagnetic

1. No prediction about molecular shape
2. Correct bond order predicted (net pairs of electrons in bonding orbitals)
3. Some unpaired electrons – paramagnetic
Summary of today’s class

- **Valence bond theory**
 - σ bonds are localized to existing between two atoms. π bonds can be localized also, or can be delocalized across molecule (e.g., benzene)
 - Hybridization of different combinations of s, p and d atomic orbitals accounts for electron pair geometry, i.e., explains how bond angles arise
 - Single bonds are always σ type, orbitals overlap directly on axis of bond
 - Second and third bonds are always π type, off axis by atomic p-orbital overlap (i.e., to make π bonds in molecules, must reserve some atomic p-orbitals and not hybridize them)

- **Molecular orbital theory**
 - All bonds are delocalized across entire molecule
 - Mix together all atomic orbitals of every atom and determine new molecular orbital energies, then populate with electrons according to same Aufbau, Pauli and Hund
 - No molecular geometry predictions, but paramagnetism predictions more accurate

What you’ll see on your *Individualized Academic Prescription*

This is an example

<table>
<thead>
<tr>
<th>Chapter(s) and Major Topics*</th>
<th>Q# on test</th>
<th>Year score</th>
<th>Class average</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 and 2. Matter, formulas, and names</td>
<td>1, 2, 4, 5</td>
<td>50% 75% 25% 51% 74% 13%</td>
<td></td>
</tr>
<tr>
<td>3. Stoichiometry</td>
<td>21, 23, 24, 25</td>
<td>55% 60% 20% 55% 60% 10%</td>
<td></td>
</tr>
<tr>
<td>4. Chemical equations</td>
<td>26, 27, 29, 30</td>
<td>40% 50% 20% 40% 50% 12%</td>
<td></td>
</tr>
<tr>
<td>5. Energy and heat</td>
<td>31, 38</td>
<td>60% 50% 0% 60% 50% 16%</td>
<td></td>
</tr>
<tr>
<td>6. pH and acid-base chemistry</td>
<td>33, 34, 35, 36, 38</td>
<td>60% 60% 50% 60% 50% 10%</td>
<td></td>
</tr>
<tr>
<td>7. Lewis structures, electron bond & VSEPR theories, molecular shapes, bond energy and bond angles</td>
<td>maximum possible: 33 questions</td>
<td>24% 23% 23% 33% 50% 10%</td>
<td></td>
</tr>
</tbody>
</table>

More detailed lists of topics in each chapter are included separately