Exam

Name_____

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question

1) Under appropriate conditions, nitrogen and hydrogen undergo a combination reaction to yield 1) _____ ammonia: $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$ A 7.1-g sample of N₂ requires ______ g of H₂ for complete reaction. A) 0.51 B) 1.5 C) 0.76 D) 17.2 E) 1.2 2) How many moles of magnesium oxide are produced by the reaction of 3.82 g of magnesium nitride 2) with 7.73 g of water? $Mg_3N_2 + 3H_2O \rightarrow 2NH_3 + 3MgO$ A) 0.0756 B) 0.113 C) 4.57 D) 0.0378 E) 0.429 3) Of the species below, only ______ is NOT an electrolyte. 3) B) Ar A) HCl C) Rb₂SO₄ D) NaCl E) KOH 4) With which of the following will ammonium ion form an insoluble salt? 4) A) chloride B) carbonate C) sulfate and carbonate D) sulfate E) none of the above 5) A weak electrolyte exists predominantly as _____ in solution. 5) _____ C) an isotope E) molecules A) electrons B) ions D) atoms 6) Which of the following are weak electrolytes? 6) 1) HCl 2) HC₂H₃O₂ 3) NH3 4) KCl A) $HC_2H_3O_2$, KClB) HCl, HC₂H₃O₂, KCl C) HCl, HC2H3O2, NH3, KCl D) HCl, KCl E) HC2H3O2, NH3

7) Which ion(s) is/are spectator ions in the formation of a precipitate of AgCl via combining aqueous solutions of CoCl ₂ and AgNO ₃ ?							
A) Co ²⁺ and N	O ₃ -						
B) NO ₃ - and C	1-						
C) Cl-							
D) NO ₃ -							
E) Co ²⁺ and Ag	;+						
8) When H ₂ SO ₄ is neutralized by NaOH in aqueous solution, the net ionic equation is							
A) $SO_4^{2-}(aq) + 2Na^+(aq) \rightarrow Na_2SO_4(s)$							
B) H ₂ SO ₄ (aq) + 2OH ⁻ (aq) \rightarrow 2H ₂ O (l) + SO ₄ ²⁻ (aq)							
C) 2H ⁺ (aq) + 2NaOH (aq) \rightarrow 2H ₂ O (l) + 2Na ⁺ (aq)							
D) SO_4^{2-} (aq) + 2Na+ (aq) $\rightarrow Na_2SO_4$ (aq)							
E) H ⁺ (aq) + OH ⁻ (aq) \rightarrow H ₂ O (l)							
_	_						
9) The molarity of a s	solution prepared b	y diluting 43.72 mL o	f 5.005 M aqueous Kg	2Cr2O7 to 500 mL is	9)		
	R) 57 2	C) 0.870	D = 0.0870	E) 0 429			
A) 0.0044	D) 37.2	C) 0.870	D) 0.0879	E) 0.438			
10) The balanced reaction between aqueous nitric acid and aqueous strontium hydroxide is							
·			())				
A) HNO ₃ (aq) + Sr(OH) ₂ (aq) \rightarrow H ₂ O (l) + Sr(NO ₃) ₂ (aq) B) HNO ₂ (a) = Sr(OH) ₂ (a) = Sr(NO ₂) (a) = Sr(NO ₃) ₂ (a)							
D) $\Pi N \cup 3$ (aq) + $\Im (\cup \Pi) 2$ (aq) \rightarrow $\Im (\square \cup 3)2$ (aq) + $\Pi 2$ (g) () $\Pi N \cup 3$ (aq) + $\Im (\cup \Pi) 2$ (aq) \rightarrow $\Im (\square \cup 3)2$ (aq) + $\Pi 2$ (g)							
D) $2HNO_2$ (aq)	C) $\Pi NO3$ (aq) + $SrO\Pi$ (aq) $\rightarrow H_2O$ (I) + $SrNO3$ (aq) D) $2HNO2$ (aq) + $Sr(OH)2$ (aq) $\rightarrow 2H_2O$ (I) + $Sr(NO2)2$ (aq)						
$E_{1} \xrightarrow{2} 11 \times 03 \text{ (aq)} + 51(0\pi)2 \text{ (aq)} \rightarrow 2\pi 20 \text{ (a)} + 51(1003)2 \text{ (aq)}$ $E_{1} \xrightarrow{2} 11 \times 03 \text{ (aq)} + 51(0\pi)2 \text{ (aq)} \rightarrow 51(1003)2 \text{ (aq)} + 2\pi 20 \text{ (aq)}$							
)		- (- 3)2 (- 1)	2 (8)				
11) The net ionic equation for the dissolution of zinc metal in aqueous hydrobromic acid is							
A) $2Zn(s) + H^+(aq) \rightarrow 2Zn^{2+}(aq) + H_2(g)$							
B) Zn (s) + 2Br	$$ (aq) \rightarrow ZnBr ₂ (a	(q)					
C) Zn (s) + 2H	+ (aq) \rightarrow Zn ² + (aq)) + H ₂ (g)					
D) Zn (s) + 2HBr (aq) \rightarrow ZnBr ₂ (s) + 2H ⁺ (aq)							
E) Zn (s) + 2H	$Br(aq) \rightarrow ZnBr_2(a)$	aq) + 2H+ (aq)					
12) Which of the follo	wing is an oxidation	n-reduction reaction?			12)		
A) AgNO ₃ (aq) + HCl (aq) \rightarrow AgCl (s) + HNO ₃ (aq)							
B) HCl (aq) + NaOH (aq) \rightarrow H ₂ O (l) + NaCl (aq)							
C) Cu (s) + 2AgNO ₃ (aq) \rightarrow 2Ag (s) + Cu(NO ₃) ₂ (aq)							
D) H ₂ CO ₃ (aq)	+ Ca(NO ₃) ₂ (aq)	\rightarrow 2HNO ₃ (aq) + Ca	aCO ₃ (s)				
E) Ba(C ₂ H ₃ O ₂)	2 (aq) + Na2SO4 ($(aq) \rightarrow BaSO_4(s) + 2$	2NaC2H3O2 (aq)				

13) is an oxi	dation reaction.				13)				
A) The reaction of sodium chloride with lead nitrate to form lead chloride and sodium nitrate									
B) Ice melting in a soft drink									
C) Table salt dissolving in water for cooking vegetables									
D) Rusting of iron									
E) Neutralization	of HCl by NaOH								
14) Which combination will produce a precipitate?									
A) AgNO ₃ (aq) and Ca(C ₂ H ₃ O ₂) ₂ (aq)									
B) KOH (aq) and Mg(NO ₃) ₂ (aq)									
C) NaOH (aq) and HCl (aq)									
D) NaC ₂ H ₃ O ₂ (aq) and HCl (aq)									
E) NaOH (aq) and HCl (aq)									
15) Which compound has the atom with the highest oxidation number?									
A) NH4Cl	B) Na3N	C) MgSO ₃	D) Al(NO ₂) ₃	E) CaS	,				
, <u> </u>	, C		, , _,,,						
16) The reaction					16)				
10) The reaction					10)				
$4Al(s) + 3O_2$	$(g) \rightarrow 2Al_2O_3(s)$	$\Delta H^\circ = -3351 \text{ kJ}$							
		,							
is , and t	herefore heat is	by the reacti	on.						
A) exothermic, re	leased								
B) exothermic, ab	sorbed								
C) endothermic, a	absorbed								
D) endothermic, 1	eleased								
E) thermoneutral	, neither released no	or absorbed							
17) The value of ΔE for	a system that perfor	ms 213 kJ of work o	n its surroundings and	l loses 79 kJ of	17)				
heat is kJ.									
A) –213	B) –292	C) –134	D) +292	E) +134					
18) The value of ΔH° for the reaction below is +128.1 kJ:									
CH ₃ OH (l)	\rightarrow CO (g) + 2H ₂ (g)							
How many kJ of hea	at are consumed whe	en 15.5 g of CH3OH	(l) decomposes as sho	own in the					
equation?									
A) 62.0	B) 8.3	C) 1.3 × 10 ²	D) 32	E) 0.48					
19) Which one of the following conditions would always result in an increase in the internal energy of 19)									
a system?									
A) The system loses heat and has work done on it by the surroundings									
B) The system loses heat and does work on the surroundings.									
C) The system gains heat and does work on the surroundings.									
D) The system gains heat and has work done on it by the surroundings.									

E) None of the above is correct.

20) 20) Of the following, which one is a state function? A) q B) w C) heat D) H E) none of the above 21) _____ 21) The units of of specific heat are _____. A) g-K/J or g-°C/J B) K/J or °C/J C) J/g-K or J/g-°C D) J/mol E) J/K or J/°C 22) For which one of the following reactions is the value of ΔH°_{rxn} equal to ΔH°_{f} for the product? 22) A) 2 C (s, graphite) + 2 H₂ (g) \rightarrow C₂H₄ (g) B) 2 H₂ (g) + O₂ (g) \rightarrow 2 H₂O (g) C) N₂ (g) + O₂ (g) \rightarrow 2 NO (g) D) H₂O (l) + 1/2 O₂ (g) \rightarrow H₂O₂ (l) E) 2 H₂ (g) + O₂ (g) \rightarrow 2 H₂O (l) 23) The value of ΔH° for the reaction below is –72 kJ. _____ kJ of heat are released when 1.0 mol 23) of HBr is formed in this reaction. H₂ (g) + Br₂ (g) \rightarrow 2HBr (g) A) 36 B) 0.44 C) 72 D) 144 E) -72 24) For which one of the following reactions is the value of ΔH°_{rxn} equal to ΔH°_{f} for the product? 24) A) C (diamond) + O₂ (g) \rightarrow CO₂ (g) B) 2Ca (s) + O₂ (g) \rightarrow 2CaO (s) C) $C_2H_2(g) + H_2(g) \rightarrow C_2H_4(g)$ D) 2C (graphite) + O₂ (g) \rightarrow 2CO (g) E) $3Mg(s) + N_2(g) \rightarrow Mg_3N_2(s)$ SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

25) Calculate the oxidation number of Cl in each of the following and indicate which species25) ______has the highest oxidation number of Cl.

HClO₄ NaClO₃ KClO₂ KClO

- 26) _____
- 26) If an equal number of moles of each of the following species were placed in water which would have the highest conductivity? MgCl₂, NaCl, K₂SO₄, Li₃PO₄

27) The in class demonstration of ionic conductivity in water used a clear, colorless sugar solution and a white cloudy solution of salt (NaCl) water. Why was the salt water cloudy?

27) _____

28) An acid is defined as something which:

28) _____

A) $Pb^{+2}(aq) + Mg(s) -> Pb(s) + Mg^{+2}(aq)$

B) $Fe^{+2}(aq) + 2Na(s) --> Fe(s) + 2Na^{+}(aq)$

C) $Ni_{(s)} + Ca^{+2}_{(aq)} -> Ni^{+2}_{aq} + Li_{(s)}$

30) Calcium oxide reacts with water in a combination reaction to produce calcium hydroxide:

30) _____

 $CaO(s) + H_2O(l) \rightarrow Ca(OH)_2(s)$

A 1.50-g sample of CaO is reacted with 1.45 g of H₂O. How many grams of water remains after completion of reaction?

31) A stock solution of HNO3 is prepared and found to contain 13.5 M of HNO3. If 25.0 mL of 31) the stock solution is diluted to a final volume of 0.500 L, the concentration of the diluted solution is _____ M.

32) The molarity (M) of an aqueous solution containing 22.5 g of glucose ($C_6H_{12}O_6$) in 35.5 mL of solution is _____.

33) The value of ΔH° for the reaction below is –186 kJ.

 $\mathrm{H}_{2}\left(\mathrm{g}\right)\ +\ \mathrm{Cl}_{2}\left(\mathrm{g}\right)\ \rightarrow\ 2\mathrm{HCl}\left(\mathrm{g}\right)$

The value of ΔH_{f}° for HCl (g) is _____ kJ/mol.

33) _____

32) _____

34) The value of Δ H° for the reaction below is –482 kJ. Calculate the heat (kJ) released to the surroundings when 12.0 g of CO (g) reacts completely.

 $2CO(g) + O_2(g) \rightarrow 2CO_2(g)$

35) A sample of aluminum metal absorbs 9.86 J of heat, upon which the temperature of the sample increases from 23.2°C to 30.5°C. Since the specific heat capacity of aluminum is 0.90 J/g–K, the mass of the sample is _____ g.

35) _____

36) Calculate ΔH° (in kJ) for reaction 3.

the enthalpy of the reaction in which sulfur dioxide is oxidized to sulfur trioxide

 $2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$

is _____ kJ.

∧H – **-**790 kI

36) _____

34) _____

Answer Key Testname: PRACTICE TEST 2A

1) B

2) B 3) B 4) E 5) E 6) E 7) A 8) E 9) E 10) D 11) C 12) C 13) D 14) B 15) C 16) A 17) B 18) A 19) D 20) D 21) C 22) A 23) A 24) E 25) 7, 5, 3, 1. HClO4 has the highest. 26) Li₃PO₄ 27) The salt contains insoluble compounds to prevent the grains of salt from sticking together in humid weather. 28) increases the concentration of H+ ions in aqueous solutions 29) a0 Yes, b) Yes, c) No 30) .970 g 31) 0.675

32) 3.52

33) -93.0

34) 103

35) 1.5

36) -196