Name_____

Avogadro's number = 6.02×10^{23} , h = 6.626×10^{-34} J s, c = 3×10^8 m/s MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. EACH QUESTION IS WORTH 2 PTS.

1) The formula	a weight of potassium dic	hromate (K ₂ Cr ₂ O ₇) is	amu.		1)
A) 242.18	B) 333.08	C) 255.08	D) 294.18	E) 107.09	
2) In which rea	action does the oxidation	number of hydrogen o	change?		2)
A) 2 Na (s) + 2 H ₂ O (l) \rightarrow 2 NaOH	$(aq) + H_2(g)$			
B) 2 HClo	$O_4 (aq) + CaCO_3 (s) \rightarrow Ca$	$(ClO_4)_2 (aq) + H_2O($	l) + CO ₂ (g)		
C) HCI (a	$(q) + NaOH (aq) \rightarrow NaCI ($	$(aq) + H_2O(l)$			
D) SO ₂ (g	$) + H_2O(l) \rightarrow H_2SO_3(aq)$)			
3) Screening by	y core electrons in atoms i	is			3)
A) less ef	ficient than that by valence	ce electrons			
B) essent	ally identical to that by v	alence electrons	ing down a group		
D) more e	efficient than that by vale	nce electrons	nig down a group		
E) <u>both</u> e	ssentially identical to that	by valence electrons	and responsible for a	general decrease in	
atomic	radius going down a gro	pup	-	-	
4) Combining	aqueous solutions of BaI ₂	and Na ₂ SO ₄ affords	a precipitate of BaSO	4. Which ion(s)	4)
is/are specta	tor ions in the reaction?				
A) Na+ a	nd I-				
B) Na+ o	nly				
C) Ba ² + a	and SO_4^2 -				
D) Ba ² + c	only				
E) SO ₄ 2-	and I-				
5) Which pair	of atoms constitutes a pai	r of isotopes of the sar	ne element?		5)
(1) 17 x	17 _Y	1			, <u> </u>
A) 9 A	8 1				
B) $\frac{14}{6}$ X	$^{12}_{6}X$				
C) $\frac{14}{6}$ X	$^{14}_{7}$ X				
D) $\frac{20}{10}$ X	$\frac{21}{11}X$				
E) $\frac{19}{10}$ X	¹⁹ ₉ x				
6) Which elem	ent would be expected to	have chemical and pł	nysical properties clos	sest to those of	6)
fluorine?		Ĩ			·
A) Ne	B) O	C) S	D) Fe	E) Cl	

7) W	7) Which equation correctly represents the <u>first</u> ionization of phosphorus?						7)	
	A) $P^+(g) + e^- \rightarrow P(g)$							
	B) $P(g) \rightarrow P^{-}(g)$) + e ⁻						
	$C) P(g) \rightarrow P^+(g)$	+ e ⁻						
	$D) P(g) + e^{-} \rightarrow F$	Ρ - (σ)						
	E = (a) = P(a)							
	$L(f) = L(g) \rightarrow L(g)$	+ e						
8) Tł	ne value of ΔE for a	system that perform	ms 213 kJ of w	vork on its sur	roundings	and loses 79 kJ of	8)	
he	eat is kJ							
	A) -292	B) +134	C) +292	D)	-134	E) –213		
9) Tł	ne uncertainty prin	ciple states that					9)	
,	A) it is impossible	to know how many	electrons the	re are in an at	om		, <u> </u>	
	B) it is impossible	to know anything w	vith certainty					
	C) matter and ener	rgy are really the sam	me thing					
	D) it is impossible	to know the exact p	osition and n	nomentum of	an electron			
	E) there can only b	pe one uncertain dig	it in a reporte	ed number				
10) 14	71 1 .	1 (1 1)	1 1.1.	1 .	6 0		10)	
10) W	(hat is the maximur	n number of double	bonds that a	carbon atom	can form?	E) 1	10)	
	A) 2	Б) (C) 3	D)	4	E) 1		
11) O	vidation cannot occ	ur without					11)	
11) 0.	A) water	B) oxygen	 C) acid	D)	reduction	E) air	· · · · · · · · · · · · · · · · · · ·	
	n) water	b) oxygen	C) ucia	2)	reduction	L) un		
12) [Δ	r14e23d104n3 is th	e electron configura	tion of $a(n)$	ato	m		12)	
12)[1	A) As	B) V	C) Sb	ato. D)	п. Р	E) Sn	12)	
	11) 110	<i>D</i>) v	0,00	2)	1	L) 811		
13) A	typical triple bond						13)	
10)11	A) consists of three	 e shared electrons					10)	
	B) consists of six s	hared electron pairs	6					
	C) is longer than a	single bond						
	D) consists of one of	σ bond and two π b	onds					
	E) consists of two	σ bonds and one π l	bond					
14) Tł	14) The internal energy of a system is always increased by					14)		
A) withdrawing heat from the system								
	B) adding heat to	the system and havi	ing the systen	n do work on	the surrour	ndings		
	C) a volume comp	ression						
	D) having the syste	em do work on the s	surroundings					
	E) adding heat to t	the system						
15) A strong electrolyte is one that completely in solution.						15)		
	A) reacts	B) ionizes		C) aecompos	ses	(U) disappears		
14) IT	our monte and tel	a ano occurried in - 1	No atom	r			16)	
10) П	A) 1	B) 0	C) 3	ית : ית	6	F) 2	10)	
	· · / I	5)0	C_{j}	D)	0	L) Z		

 17) Which of the following is an illustration of the law of constant composition? A) Water boils at 100°C at 1 atm pressure. B) Water and salt have different boiling points. C) Water is 11% hydrogen and 89% oxygen by mass. D) Water can be separated into other substances by a chemical process. E) Water is a compound. 					17)
18) The enthalpy change for the following reaction is –483.6 kJ:					18)
$2H_2(g) + 0$	$O_2(g) \rightarrow 2H_2O(g)$)			
Therefore, the enth	alpy change for the	following reaction is	kJ:		
4H ₂ (g) +	$2O_2(g) \rightarrow 4H_2O(g)$	g)			
A) 967.2	B) -483.6	C) 483.6	D) 2.34 × 10 ⁵	E) -967.2	
 19) The hybridization of geometry about this A) octahedral B) tetrahedral C) trigonal plana D) linear E) trigonal bipyr 	of orbitals on the cer s central atom is r amidal	ntral atom in a molecu 	ıle is sp ² . The electroi	n-domain	19)
20) What is the coefficient	ent of O ₂ when the	following equation is	completed and balan	ced?	20)
$C_4H_8O + O_2 \rightarrow $					
A) 4	B) 12	C) 11	D) 18	E) 6	
21) The formula of a sa	lt is XCl2. The X-io	n in this salt has 28 el	ectrons. The metal X	is .	21)
A) Pd	B) Ni	C) Fe	D) Zn	E) V	/
22) There are					
<u>(29.2 – 20.0</u>	$\frac{10}{39} (1.79 \times 10^5)$				
A) 1	B) 2	C) 3	D) 4	E) 5	
23) Which one of the fo A) K ₂ SO ₄	llowing compound B) Fe(NO3)3	s is insoluble in water C) AgNO3	? D) Na ₂ CO ₃	E) ZnS	23)
 24) For resonance forms of a molecule or ion, A) there cannot be more than two resonance structures for a given species B) all the resonance structures are observed in various proportions C) one always corresponds to the observed structure D) the observed structure is an average of the resonance forms 					24)

E) the same atoms need not be bonded to each other in all resonance forms

25) How many unpaired electrons are there in an O^{2-} ion?

25)

- A) 0
- B) 1
- C) 2
- D) 3
- E) This cannot be predicted.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

27) (6 pts) Write the condensed electron configuration for the following elements:

27) _____

48Cd :

14Si :

40Zr :

28) (5 pts) Draw the Lewis structure for carbon monoxide. Indicate the formal charge on each 28) _____ atom.

29) (4 pts) Name the following compounds:	29)
H ₂ SO ₄	
CCl ₄	
KI	
SO ₃	
30) (5 pts) Draw the Lewis structure and any resonance structures for the nitrate ion. Indicate the formal on all the atoms for one Lewis structure.	30)

31) (4 pts) Draw the shape of an sp² hybridized orbital. What is the name of this geometric shape?

32) (4 pts) Balance the follow two equations:

 $NaCl_{(aq)} + Pb(NO_3)_2_{(aq)} -> PbCl_2_{(s)} + NaNO_3_{(aq)}$

33) (4 pts) Sketch how alpha, beta, and gamma radiation deflect between positively and 33) _____

 $C_{3}H_{6}O_{(l)} + O_{2(g)} - CO_{2(g)} + H_{2}O_{(g)}$

negatively charged plates. What subatomic particle is beta radiation made of?

31) _____

32) _____

Calculations: Do 9 out of the following 10 questions and cross out the one you do not want graded. If none is crossed ou then the last question will not be graded. Show as much work as possible for partial credit. All answers should have a number AND a unit.

34) (6 pts) If you have 4 moles of CO₂, how many atoms of O do you have?

35) (6 pts) BALANCE the equation below, then use it to calculate how many grams of water are produced when 15 grams of CH₄ burn in a natureal gas flame:

 $CH_{4(g)}$ + $O_{2(g)}$ --> $CO_{2(g)}$ + $H_{2}O_{(g)}$

36) (6 pts) What is the frequency (v) of a photon with wavelength of 632 nm? What is the energy of this photon in Joules?

37) (6 pts) If the density of Al is 2.7 g / cm³, then what is the volume in cm³ of a block of Al that weighs 10 kg?

38) (6 pts) Indicate whether or not the following reaction will occur: Given that the condensed table below:

 $\begin{array}{rl} Mg \dashrightarrow Mg^{+2} & + 2 \ e-\\ Pb \dashrightarrow Pb^{+2} & + 2 \ e-\\ Cu \dashrightarrow Cu^{+2} & + 2 \ e-\\ Ag \dashrightarrow Ag^{+} & + \ e-\\ \end{array}$ where Mg is easiest to oxidize and Ag is the most difficult

 $Pb^{+2} + Mg(s) \longrightarrow Mg^{+2} + Pb(s)$

 Cu^{+2} + $2Ag(s) \rightarrow 2Ag^{+}$ + Cu(s)

39) (6 pts) Given the two equations below, what is the enthalpy change for the formation of hydrazine, $N_2H_{4(l)}$, formed from its elements?

$$\begin{split} N_2H_{4(l)} + O_{2(g)} &\longrightarrow N_{2(g)} + 2H_2O_{(l)} \quad \Delta H = -622.2 \text{ kJ} \\ \\ H_{2(g)} + 1/2 O_{2(g)} &\longrightarrow H_2O_{(l)} \quad \Delta H = -285.8 \text{ kJ} \end{split}$$

40) (6 pts) Convert the density 8.16 kg / m^3 $\,$ into $\,$ mg / mm^3

41) (6 pts) Using the equation below, how many grams of Fe₂O₃ was used if 2000 kJ were released?

2 Al(s) + Fe₂O₃ --> Al₂O₃ + 2 Fe(s) $\Delta H = -847.6 \text{ kJ}$

42) (6 pts) What is the molar concentration of a bright blue solution of Cu(SO₄) made by adding 79.8 g of this salt to 1 L of water? Using this stock solution, if you wanted to make 10 mL of 0.1 M solution what volume of stock solution would you use?

43) (6 pts) BALANCE the equation below, then use it to calculate how many<u>grams of MgO</u> will be produced if you start with 3.11 moles of Mg and 1.66 moles of O₂.

 $Mg(s) + O_2(g) --> MgO(s)$

Answer Key Testname: FINAL A

1) D 2) A 3) D 4) A 5) B 6) E 7) C 8) A 9) D 10) A 11) D 12) A 13) D 14) E 15) B 16) C 17) C 18) E 19) C 20) C 21) D 22) B 23) E 24) D 25) A 26) Figure 6.22b in text. 27) Cd : [Kr] 4d¹⁰5s², Si: [Ne] 3s²3p², Zr: [Kr] 4d²5S² 28) :CO: with a triple bond in between. 29) Sulfuric Acid, Carbon tetrachloride, potassium iodide, sulfur trioxide 30) page 323 of text. 31) Figure 9.18 in text. Trigonal Planar 32) 2NaCl + Pb(NO3)2 --> PbCl2 + 2 NaNO3 C3H6O + 4O2 --> 3 CO2 + 3 H2O 33) See figure 2.8 in the text. Beta radiation is made of electrons. 34) 4.8 x 10²⁴ O atoms 35) CH4 + 2O2 --> CO2 + 2 H2O, 33.75 g H2O produced 36) 4.75 x 10¹⁴ 1/s 37) 3.7 x 10³ cm³ 38) Pb/Mg will occur, Cu/Ag will not occur 39) $N_{2(g)} + 2H_{2(g)} -> N_2H_{4(l)} \Delta H = 50.6 \text{ kJ}$ 40) 8.16 x 10⁻³ mg / mm³ 41) 376.8 g Fe2O3 42) Stock concentration is 0.5 M CuSO₄, and 2 mL of stock would be used to make 10 mL of 0.1M CuSO₄ 43) O2 is limiting, and 125.3 g of MgO will be produced.